Gravitational potential energy can be given by the equation
PE = mgh
where m is the mass,
g is the gravitational constant 9.81 or 10 depending on rounding
and h is the height
well weight is a force equiavlent to
W= m*g
so comparing that to the potential energy equation, divide the potential energy by the height and you will get weight in Newtons
Answer:
44.4 m/s
Explanation:
d = 80 m, t = 1.8 s, find v
d = v*t
v = d/t = 80/1.8 = 44.4 m/s
<h2>Greetings!</h2>
To find this value, you need to remember the speed formula:
3 = 6 / 2
Speed = distance ÷ time
Rearrange to make distance the subject:
Distance = speed * time
Simply plug these values into this:
5.6 * 8.25 = 46.2
<h3>So the player will travel 46.2 metres!</h3>
<h2>Hope this helps!</h2>
Answer:
The final velocity of the bullet is 9 m/s.
Explanation:
We have,
Mass of a bullet is, m = 0.05 kg
Mass of wooden block is, M = 5 kg
Initial speed of bullet, v = 909 m/s
The bullet embeds itself in the block which flies off its stand. Let V is the final velocity of the bullet. The this case, momentum of the system remains conserved. So,

So, the final velocity of the bullet is 9 m/s.
The 'formulas' to use are just the definitions of 'power' and 'work':
Power = (work done) / (time to do the work)
and
Work = (force) x (distance) .
Combine these into one. Take the definition of 'Work', and write it in place of 'work' in the definition of power.
Power = (force x distance) / (time)
From the sheet, we know the power, the distance, and the time. So we can use this one formula to find the force.
Power = (force x distance) / (time)
Multiply each side by (time): (Power) x (time) = (force) x (distance)
Divide each side by (distance): Force = (power x time) / (distance).
Look how neat, clean, and simple that is !
Force = (13.3 watts) x (3 seconds) / (4 meters)
Force = (13.3 x 3 / 4) (watt-seconds / meter)
Force = 39.9/4 (joules/meter)
<em>Force = 9.975 Newtons</em>
Is that awesome or what !