The easiest way is to use the Law of Gay-Lussac. This law states that there is a direct relation between the temperature in Kelvin of a gas and the pressure.
Then, namig p the pressure and T the temperature in Kelvin and using subscripts for every state:
p/T is constant ==> p_1 / T_1 = p_2/T_2
From which you obtain:
p_2 = [p_1 / T_1] * T_2
T_1 = 33.0 + 273.15 = 306.15 K
T _2 = 21.4 + 273.15 = 294.55 K
p_1 = 1014 kPa
p_2 = 1014 kPa * 294.55 K / 306.15 K = 975.6 kPa
C. Of the products is equal to the reactants.
Good luck out there! :)
Answer:

Explanation:
We know we will need a balanced chemical equation with masses and molar masses, so, let's gather all the information in one place.
You don't tell us what the reaction is, but we can solve the problem so long as we balance the OH.
M_r: 58.32
Mg(OH)₂ + … ⟶ … + 2HOH
m/g: 58.3
(a) Moles of Mg(OH)₂

(b) Moles of H₂O
The molar ratio is 2 mol H₂O = 1 mol Mg(OH)₂.

The reaction will form
of water.
Answer:
HEY CAN YOU POST YOUR LAST QUESTION AGAIN? CAUSE I HAVE THE ANSWER
Answer: A) ionic salt
Explanation: Chlorine has a high electronegativity of 3.0. Copper like most metals has a low electronegativity, So the bonding is ionic making the compound an ionic salt.