The impulse-momentum theorem
<h2>
Answer: Nonmetals to Nonmetals </h2>
Covalent bonds hold non-metallic atoms together. These atoms have many electrons in their outermost level and have a tendency to gain electrons rather than to yield them.
In this case the bond is formed by sharing a pair of electrons between the two atoms, one from each atom. Then, this pair of shared electrons is common to the two atoms and holds them together, so that both atoms acquire more stability.
Therefore the correct answer is C.
Answer:
In physics, motion is the change in the position of an object over time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed, and time. The motion of a body is observed by attaching a frame of reference to an observer and measuring the change in position of the body relative to that frame.
- Sophia
Answer:
h = 2.087 m
Explanation:
Given
m₁ = 3 kg
v₁ = 20 m/s
m₂ = 2 kg
v₂ = - 14 m/s
In a completely inelastic collision the colliding objects stick together after the collision and move together as a single object.
In the given problem, lets assume that the balls of putty are initially moving along the y axis, upward direction being the positive y direction. And the collision occurs at the origin of the coordinate system.
We can apply the equation
vs = (m₁*v₁ + m₂*v₂) / (m₁ + m₂)
⇒ vs = (3 kg*20 m/s + 2 kg*(- 14 m/s)) / (3 kg + 2 kg)
⇒ vs = 6.4 m/s (↑)
To calculate the maximum height h attained by the combined system of two balls of putty after the the collision, we use the expression for linear motion under gravity:
vf² = vi² - 2*g*h
where
vf = 0 m/s
g = 9.81 m/s²
vi = vs = 6.4 m/s
finally we get h:
h = vi² / (2*g)
⇒ h = (6.4 m/s)² / (2*9.81 m/s²) = 2.087 m