1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kumpel [21]
3 years ago
9

A diffraction grating is to be used to find the wavelength of the emission spectrum of a gas. The grating spacing is not known,

but light of a known wavelength of 632.8 nm is deflected by 43.2° in the second order by this grating. Light of the wavelength to be measured is deflected by 34.9° in the second order. What is the wavelength of the light that is to be measured?
Physics
1 answer:
Bumek [7]3 years ago
7 0

Answer:

528.9 nm

Explanation:

For a grating dsinθ = mλ where m = order of grating, d = grating space, λ = wavelength of light and θ = angle of deflection of light

First, we find the grating space d = mλ/sinθ where m = 2 for second order, λ = 632.8 nm = 632.8 × 10⁻⁹ m, θ = 43.2°

d = mλ/sinθ = 2 × 632.8 × 10⁻⁹ m ÷ sin43.2° = 1.849 × 10⁻⁶ m = 1.849 μm

We now find the wavelength of the light to be measured from λ = dsinθ/m

Here, θ = 34.9° and m = 2 for second order. So, we have

λ = dsinθ/m = 1.849 × 10⁻⁶ m × sin34.9° ÷ 2 = 0.5289 × 10⁻⁶ m = 528.9 nm

You might be interested in
Continuous sinusoidal perturbation Assume that the string is at rest and perfectly horizontal again, and we will restart the clo
Elena-2011 [213]

a) 3.14 \cdot 10^{-4} s

b) See plot attached

c) 10.0 m

d) 0.500 cm

Explanation:

a)

The position of the tip of the lever at time t is described by the equation:

y(t)=(0.500 cm) sin[(2.00\cdot 10^4 s^{-1})t] (1)

The generic equation that describes a wave is

y(t)=A sin (\frac{2\pi}{T} t) (2)

where

A is the amplitude of the wave

T is the period of the wave

t is the time

By comparing (1) and (2), we see that for the wave in this problem we have

\frac{2\pi}{T}=2.00\cdot 10^4 s^{-1}

Therefore, the period is

T=\frac{2\pi}{2.00\cdot 10^4}=3.14 \cdot 10^{-4} s

b)

The sketch of the profile of the wave until t = 4T is shown in attachment.

A wave is described by a sinusoidal function: in this problem, the wave is described by a sine, therefore at t = 0 the displacement is zero, y = 0.

The wave than periodically repeats itself every period. In this sketch, we draw the wave over 4 periods, so until t = 4T.

The maximum displacement of the wave is given by the value of y when sin(...)=1, and from eq(1), we see that this is equal to

y = 0.500 cm

So, this is the maximum displacement represented in the sketch.

c)

When standing waves are produced in a string, the ends of the string act as they are nodes (points with zero displacement): therefore, the wavelength of a wave in a string is equal to twice the length of the string itself:

\lambda=2L

where

\lambda is the wavelength of the wave

L is the length of the string

In this problem,

L = 5.00 m is the length of the string

Therefore, the wavelength is

\lambda =2(5.00)=10.0 m

d)

The amplitude of a wave is the magnitude of the maximum displacement of the wave, measured relative to the equilibrium position.

In this problem, we can easily infer the amplitude of this wave by looking at eq.(1).

y(t)=(0.500 cm) sin[(2.00\cdot 10^4 s^{-1})t]

And by comparing it with the general equation of a wave:

y(t)=A sin (\frac{2\pi}{T} t)

In fact, the maximum displacement occurs when the sine part is equal to 1, so when

sin(\frac{2\pi}{T}t)=1

which means that

y(t)=A

And therefore in this case,

y=0.500 cm

So, this is the displacement.

6 0
3 years ago
A distinct layer within a soil profile is called a/an
posledela
A distinct layer within a soil profile is called a soil horizon. 
8 0
3 years ago
When a gas is rapidly compressed (say, by pushing down a piston) its temperature increases. When a gas expands against a piston,
shusha [124]

Answer:

Explained in explanation

Explanation:

The first law of thermodynamics states that the change in internal energy of a system(ΔU) is equal to the sum of the net heat transfer into the system(Q) and the net work done on the system(W). In equation, this law is;

ΔU = Q + W

Now, when there's gas inside a container with a movable piston that's tightly fitting, we will assume that the piston can move up and down thereby compressing the gas or allowing the gas to expand against it.

Now these gas molecules inside the container possess kinetic energy. Thus, the internal energy(U) of the system is simply the sum of all the kinetic energies of the individual gas molecules present in the container.

Therefore, if the temperature(T) of the gas increases, then the speed and internal energy(U) of the gas molecules will also increase. In the same way, if the temperature of the gas decreases, the speed and internal energy of the gas molecules would also decrease.

Now, back to the question, when the piston is pushed down, it does work on the gas and the gas does negative work on the piston. Thus, the gas will be get compressed to a smaller space, and thereby making the gas molecules to hit the piston at a faster rate. Thus, there is a decrease in speed and as we saw earlier that when there is a decrease in speed, it means temperature has decreased.

Whereas, when the piston is moved up, the gas does positive work on the piston and the speed of the gas molecules will increase. Like I said earlier that increase in speed means increase in temperature.

4 0
3 years ago
The ampere is a unit of which physical quantity?
hram777 [196]
Electrical current is measured using the ampere.
7 0
3 years ago
Read 2 more answers
Calculate the number of free electrons per cubic meter for some hypothetical metal, assuming that there are 1.3 free electrons p
boyakko [2]

Answer:

The number of free electrons per cubic meter is 7.61\times 10^{28}\ m^{-3}

Explanation:

It is given that,

The number of free electrons per cubic meter is, 1.3

Electrical conductivity of metal, \sigma=6.8\times 10^7\ \Omega^{-1}m^{-1}

Density of metal, \rho=10.5\ g/cm^3

Atomic weight, A = 107.87 g/mol

Let n is the number of  free electrons per cubic meter such that,

n=1.3\ N

n=1.3(\dfrac{\rho N_A}{A})

Where

\rho is the density of silver atom

N_A is the Avogadro number

A is the atomic weight of silver

n=1.3\times (\dfrac{10.5\ g/cm^3\times 6.02\times 10^{23}\ atoms/mol}{107.87\ g/mol})

n=7.61\times 10^{22}\ cm^{-3}

or

n=7.61\times 10^{28}\ m^{-3}

Hence, this is the required solution.

6 0
3 years ago
Other questions:
  • gas has a volume of 185 ml and pressure of 310 mm hg. The desiered volume is 74.0 ml. What is the required new pressure
    10·1 answer
  • A tourist averaged 82km/hr for a 6.5h trip in her volkswagen. how far did she go?
    9·1 answer
  • An advertising balloon shaped like a giant soda can is 15 feet tall and 7 feet wide. How many cubic feet of helium will be neede
    8·1 answer
  • If we increase the distance traveled when doing work , and keep all other factors the same, what will happen?
    6·2 answers
  • Comparing X-ray to radio wave, which has a shorter wavelength?
    14·1 answer
  • Work and how does it measure energy?
    14·2 answers
  • A stationary 15 kg object is located in a table near the surface of the earth. The coefficient of static friction between the su
    8·1 answer
  • A careful photographic survey of Jupiter’s moon Io by the spacecraft Voyager 1 showed active volcanoes spewing liquid sulfur to
    15·1 answer
  • Which of the following supports the theory of continental drift?
    15·1 answer
  • What form of energy are microwaves?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!