Answer:
particle's potential energy = 70J
Explanation:
From conservation of energy; K1 + Ue1 = K2 + Ue2
where K1 and K2 are the kinetic energies at two positions and Ue1 and Uue2 are the electrical potential energies at two positions.
k1 = 10J, Ue1 = 100J
K2 = 40J
substitute into K1 + Ue1 = K2 + Ue2
Ue2 = K1 + Ue1 - K2
= 10 +100 - 40
Ue2 = 70J
Answer:
If R₂=25.78 ohm, then R₁=10.58 ohm
If R₂=10.57 then R₁=25.79 ohm
Explanation:
R₁ = Resistance of first resistor
R₂ = Resistance of second resistor
V = Voltage of battery = 12 V
I = Current = 0.33 A (series)
I = Current = 1.6 A (parallel)
In series

In parallel


Solving the above quadratic equation


∴ If R₂=25.78 ohm, then R₁=10.58 ohm
If R₂=10.57 then R₁=25.79 ohm
Answer:
An Atom's individual speed will change as it collides with other atoms, so we have to use an average.
Explanation:
In a gas a single atoms does an assortment of things during its time in the gas—sometimes it collides with an other atom gaining a lot of speed, sometimes losing a lot of speed in the collision, and sometimes just moving freely. Therefore: the motion of one individual atom is unpredictable, and it cannot be representative of all the the atoms in a gas, which is why we must average over all speeds of all atoms to find an average speed that allows us to calculate other quantities like temperature and pressure of the gas.
Hence, the second option <em>"an Atom's individual speed will change as it collides with other atoms, so we have to use an average" </em>stands correct.
Answer:
μk = 0.26885
Explanation:
Conceptual analysis
We apply Newton's second law:
∑Fx = m*a (Formula 1)
∑F : algebraic sum of the forces in Newton (N)
m : mass in kilograms (kg)
a : acceleration in meters over second square (m/s²)
Data:
a= -0.9 m/s²,
g = 9.81 m/s² : acceleration due to gravity
W= 75 N : Block weight
W= m*g
m = W/g = 75/9.8= 7.65 kg : Block mass
Friction force : Ff
Ff= μk*N
μk: coefficient of kinetic friction
N : Normal force (N)
Problem development
We apply the formula (1)
∑Fy = m*ay , ay=0
N-W-25 = 0
N = 75
+25
N= 100N
∑Fx = m*ax
20-Ff= m*ax
20-μk*100
= 7.65*(-0.90 )
20+7.65*(0.90) = μk*100
μk = ( 20+7.65*(0.90)) / (100)
μk = 0.26885
To find this simply draw a triangle with the hypotenuse being 15 and the angle between the hypotenuse and bottom leg is 20. The horizontal component is the horizontal leg. to find this you would use cos and then solve for the bottom leg.
When you do, you get 15cos(20)