Answer: D
Explanation: there is less light at that point.
Answer:
θ_p = 53.0º
Explanation:
For reflection polarization occurs when a beam is reflected at the interface between two means, the polarization in total when the angle between the reflected and the transmitted beam is 90º
Let's write the transmission equation
n1 sin θ₁ = ne sin θ₂
The angle to normal (vertcal) is
180 = θ2 + 90 + θ_p
θ₂ = 90 - θ_p
Where θ₂ is the angle of the transmitted ray θ_p is the angle of the reflected polarized ray
We replace
n1 sin θ_p = n2 sin (90 - θ_p)
Let's use the trigonometry relationship
Sin (90- θ_p) = sin 90 cos θ_p - cos 90 sin θ_p = cos θ_p
In the law of reflection incident angle equals reflected angle,
ni sin θ_p = ns cos θ_p
n₂ / n₁ = sin θ_p / cos θ_p
n₂ / n₁ = tan θ_p
θ_p = tan⁻¹ (n₂ / n₁)
Now we can calculate it
The refractive index of air is 1 (n1 = 1) the refractive index of seawater varies between 1.33 and 1.40 depending on the amount of salts dissolved in the water
n₂ = 1.33
θ_p = tan⁻¹ (1.33 / 1)
θ_p = 53.0º
n₂ = 1.40
θ_p = tan⁻¹ (1.40 / 1)
Tep = 54.5º
Answer:
A
Explanation:
A disadvantage is that sexual reproduction takes longer than asexual reproduction. A mate must be found, the egg must be fertilised by sperm, and then the offspring develop. ... This means that some individuals would survive and be able to reproduce and generate more offspring.
Answer:
Streams need vitality to move material, and levels of vitality change as the waterway moves from source to mouth.
At the point when vitality levels are high, huge rocks and stones can be moved. Vitality levels are generally higher close to a waterway's source, when its course is steep and its valley slender. Vitality levels rise considerably higher in the midst of flood.
At the point when vitality levels are low, just little particles can be moved (assuming any). Vitality levels are most reduced when speed drops as a waterway enters a lake or ocean (at the mouth).