This applies to nuclear reactions, specifically nuclear fission.
This huge release of energy has been used in atomic bombs and in the nuclear reactors that generate electricity.
╦────────────────────────────╦
│Hope this helped _____________________│
│~Xxxtentaction _______________________│
╩__________________________________╩
Answer:
a) The Energy added should be 484.438 MJ
b) The Kinetic Energy change is -484.438 MJ
c) The Potential Energy change is 968.907 MJ
Explanation:
Let 'm' be the mass of the satellite , 'M'(6×
be the mass of earth , 'R'(6400 Km) be the radius of the earth , 'h' be the altitude of the satellite and 'G' (6.67×
N/m) be the universal constant of gravitation.
We know that the orbital velocity(v) for a satellite -
v=
[(R+h) is the distance of the satellite from the center of the earth ]
Total Energy(E) = Kinetic Energy(KE) + Potential Energy(PE)
For initial conditions ,
h =
= 98 km = 98000 m
∴Initial Energy (
) =
m
+
Substituting v=
in the above equation and simplifying we get,
= 
Similarly for final condition,
h=
= 198km = 198000 m
∴Final Energy(
) = 
a) The energy that should be added should be the difference in the energy of initial and final states -
∴ ΔE =
- 
=
(
-
)
Substituting ,
M = 6 ×
kg
m = 1036 kg
G = 6.67 × 
R = 6400000 m
= 98000 m
= 198000 m
We get ,
ΔE = 484.438 MJ
b) Change in Kinetic Energy (ΔKE) =
m[
-
]
=
[
-
]
= -ΔE
= - 484.438 MJ
c) Change in Potential Energy (ΔPE) = GMm[
-
]
= 2ΔE
= 968.907 MJ
When you drop an object on the moon, it falls to the ground.
But it only falls about 1/6 as fast as it falls on Earth.
Explanation:
The given data is as follows.
m = 5000 kg, h = 800 km = 
, r = R + h = 
kg, G = 
As we know that,

v = 
And, it is known that formula to calculate angular velocity is as follows.

v = 
= 
= 
Thus, we can conclude that speed of the satellite is
.