Answer:
<h2>Mass of 1 Kg and 2 Kg, 1 meters apart.</h2>
Explanation:
The gravitational force is defined as

By definition, the gravitational force depends directly on the product of the masses and indirectly on the distance between the masses, which means the further they are, the less gravitational force would be. And, the greater the masses, the greater the gravitational force.
Among the options, the pair that would have the greatest gravitational force is Mass of 1 Kg and 2 Kg, with 1 meter between them.
Notice that the last choice includes the same masses but with a greater distance between them, that means it would be a weaker graviational force.
Therefore, the right answer is the second choice.
Locate the mode of 12, 3, 5, 17, 3, 18, 5, 11, 11, 15, 3, 9, 3.
zimovet [89]
Answer:
Mode = 3 because it is listed 4 times
The atoms of some materials have no free electrons in their outer orbits. These electrons are busy doing other jobs, like being shared in the orbits of two adjacent atoms. They are so closely held that it is very difficult to pull them away. Most compounds of carbon and hydrogen are like this.
<span>Plastics, whose molecules are made from long combinations of carbon and hydrogen atoms, have few or no free electrons. This means that plastics are poor conductors of electricity (and they are also poor conductors of heat). hope that helped.</span>
I believe this is electron degeneracy, because the star is essentially having too many reactions too fast and collapses in on itself eventually.
Answer: Copper and oxygen
Explanation:
Copper and oxygen shares the ionic bond. As we know that ionic bond is the most strongest bond. Here is the order:
Hydrogen bond< Metallic bond< Ionic bond.
That means order in terms of increasing bond strength is :
Hydrogen and hydrogen< Copper and copper< Copper and oxygen.