Answer:
True
Explanation:
Buoyancy is the most important factors for divers. All they do underwater is to observe the life down there but they also have some other work. However, divers may want to be negatively buoyant when they want to go on deep exploration. When they reach a destination, they may want to observe and neutral buoyancy then will be useful. When they want to go back on surface, they’ll utilize positive buoyancy.
When it comes to optics, Snell's law is the basic formula to be used. If you notice, when light hits the water, the light does not travel in the same direction. After, it hits the water, it changes in angle. Light becomes refracted. This is observed when your hands tend to become bigger if you place it underwater. The formula for Snell's Law is
n₁ sin θ₁ = n₂sin θ₂, where n is the index of refraction. This depends on the type of medium. For example, for air, n=1. The parameters θ₁ is the angle of incidence, and θ₂ is the angle of refraction. Critical angle is the incident angle needed so that the refract angle is 90°. So, modifying the equation:
n₁ sin θcrit = n₂sin 90°, since sin 90°=1,
sin θcrit = n₂/n₁
θcrit = sin ⁻¹ (n₂/n₁)
Since liquid comes first before glass, n₁=1.75 and n₂=1.52. Substituting,
θcrit = sin ⁻¹ (1.52/1.75)
θcrit = 60.29°
V=d/t
V=?
d=400m(4)
=1600m
t=6 min.
=360 s
V=1600m/360s
V=4.4m/s
The centripetal force is force acting on a body in circular motion. In circular motion, velocity is always on tangent and if we took 2 different positions on a circle, the change on velocity is a vector pointing in the middle of circle. In circular motion velocity is constant, and acceleration lies on radius of circle pointing to te middle. This acceleration is called centripetal acceleration, and the force is centripetal.
Explanation:
Below is an attachment containing the solution.