Answer: 4 ft/s
Explanation:
Given
height of man
speed of person 
height if street light
Let x be the distance between person and street light and y be the length of his shadow
From diagram
as the two triangle ADE and ABC are similar therefore we can say that




differentiate above Equation w.r.t time we get


Answer:
0.88752 kgm²
0.02236 Nm
Explanation:
m = Mass of ball = 1.2 kg
L = Length of rod = 0.86 m
= Angle = 90°
Rotational inertia is given by

The rotational inertia is 0.88752 kgm²
Torque is given by

The torque is 0.02236 Nm
Mirror: Reflects off of
Glass of water: Goes through
Dark Fabric: Absorbs into
Answer:
Volume = 1,015 acre-feet (Approx)
Explanation:
Given:
Rain = 1.7 in
Time = 30 min
Area = 29 km²
Find:
Volume in acre-feet
Computation:
1 km = 1,000 m
1 m = 3.28 feet
1 km² = 247.105 acre
d = 1.7 in = 1.7 / 12 = 0.14167 ft
Area = 29 × 247.105 = 7,166.045 acre
Volume = 7,166.045 acre × 0.14167 ft
Volume = 1,015 acre-feet (Approx)
The highest elevation reached by the ball in its trajectory is 16.4 m.
To find the answer, we need to know about the maximum height reached in a projectile.
What's the mathematical expression of the maximum height reached in a projectile motion?
- The maximum height= U²× sin²(θ)/g
- U= initial velocity, θ= angle of projectile with horizontal and g= acceleration due to gravity
What's the maximum height reached by a block that is thrown with an initial velocity of 30.0 m/s at an angle of 25° above the horizontal?
- Here, U = 30.0 m/s and θ= 25°
- Maximum height= 30²× sin²(25)/9.8
= 16.4m
Thus, we can conclude that the highest elevation reached by the ball in its trajectory is 16.4 m.
Learn more about the projectile motion here:
brainly.com/question/24216590
#SPJ4