Is their a multiple choice to choose from I'm not sure the answer I got is even right.
That would be very helpful.
Answer:
B meet A 0.01 km east of flagpole
Explanation:
given data
distance A = 5.7 km west
velocity V1 = 8.9 km/h
distance B = 4.5 km east
velocity V2 = 7 km/h
to find out
How far runners from the flagpole, when paths cross
solution
we know A and B are 5.7 + 4.5 = 10.2 km apart
and we consider here B will run distance x km for meet
so time will be for B is
time B = distance / velocity
time B = x / 7 ...................1
and
for A distance for meet = ( 10.2 - x ) km
so time A = distance / velocity
time A = ( 10.2 - x ) / 8.9 .............2
now equating equation 1 and 2
time A = time B
x / 7 = ( 10.2 - x ) / 8.9
x = 4.490
so distance of B run for meet is 4.490 km
so distance from the flagpole when their paths cross is 4.5 - 4.490 = 0.01 km
so B meet A 0.01 km east of flagpole
Answer:
sin 2θ = 1 θ=45
Explanation:
They ask us to prove that the optimal launch angle is 45º, for this by reviewing the parabolic launch equations we have the scope equation
R = Vo² sin 2θ / g
Where R is the horizontal range, Vo is the initial velocity, g the acceleration of gravity and θ the launch angle. From this equation we see that the sine function is maximum 2θ = 90 since sin 90 = 1 which implies that θ = 45º; This proves that this is the optimum angle to have the maximum range.
We calculate the distance traveled for different angle
R = vo² Sin (2 15) /9.8
R = Vo² 0.051 m
In the table are all values in two ways
Angle (θ) distance R (x)
0 0 0
15 0.051 Vo² 0.5 Vo²/g
30 0.088 vo² 0.866 Vo²/g
45 0.102 Vo² 1 Vo²/g
60 0.088 Vo² 0.866 Vo²/g
75 0.051 vo² 0.5 Vo²/g
90 0 0
See graphic ( R Vs θ) in the attached ¡, it can be done with any program, for example EXCEL
PH of 4 is Acidic and its property is to turn blue litmus red