Answer:
h = 599.5 m
Explanation:
Given,
height of structure = 828 m
weight of the tourist = 184 lb
= 184 x 0.45359 = 83.43 Kg
Potential energy = 187000 J
PE = m gd


h = 228.5 m
Height of the room above the ground.
h = 828 - 228.5
h = 599.5 m
Height of the floor above ground is equal to 599.5 m.
Answer:
Explanation:
As it’s difficult to catch it from up.
Gravitational force will pull us when we jump.
If gravity was not there, he could catch the ball. But he will float in the sky after that.
That’s the answer
Answer:
Zero
Explanation:
The work done by a force on an object is given by:

where
F is the magnitude of the force
d is the displacement of the object
is the angle between the direction of the force and the displacement of the object
In this situation, the force is the force of gravity acting on the satellite. This force always points towards the centre of the trajectory, so it is always perpendicular to the direction of motion of the satellite (since the orbit is circular), so
and
. Therefore, the work done by gravity is also zero.
Answer:
a) 
b) 
c) 
d) Displacement = 22 m
e) Average speed = 11 m/s
Explanation:
a)
Notice that the acceleration is the derivative of the velocity function, which in this case, being a straight line is constant everywhere, and which can be calculated as:

Therefore, acceleration is 
b) the functional expression for this line of slope 4 that passes through a y-intercept at (0, 3) is given by:

c) Since we know the general formula for the velocity, now we can estimate it at any value for 't", for example for the requested t = 1 second:

d) The displacement between times t = 1 sec, and t = 3 seconds is given by the area under the velocity curve between these two time values. Since we have a simple trapezoid, we can calculate it directly using geometry and evaluating V(3) (we already know V(1)):
Displacement = 
e) Recall that the average of a function between two values is the integral (area under the curve) divided by the length of the interval:
Average velocity = 