Answer:
11.23%
Explanation:
Lets take
Speed of man in still water =u= 1.73 m/s
Speed of flow of water = v=0.52 m/s
When swims in downward direction then speed of man = u + v
When swims in upward direction then speed of man = u - v
Lets time taken by man when he swims in downward direction is
and when he swims in downward direction is
Lets distance is d and it will be remain constant in both the case




Time taken in still water
2 d= t x 1.73
t=1.15 x d sec


total time in current = 0.82 +0.44 d=1.26 d sec
So the percentage time

Percentage time =11.32%
So it will take 11.32% more time as compare to still current.
Answer:
Part a)
When spring compressed by 2 cm
H = 1.47 m
Part b)
When spring is compressed by 4 cm
H = 5.94 m
Explanation:
Part a)
As we know that the spring is compressed and released
so here spring potential energy is converted into gravitational potential energy at its maximum height
So we will have


so we have

Part b)
Similarly when spring is compressed by 4 cm
then we have


so we have

Answer:
During <u>winter (late December/early January)</u> the Earth is closest to the Sun and during <u>summer (late June/early July)</u> the Earth is farthest from the Sun.
Explanation:
In the northern hemisphere, the earth usually comes closer to the sun during the time of winter season, mostly in late December or early January.
On the other hand, the earth is farthest from the sun during the time of summer season, mostly in late June or early July.
When the earth is closer to the sun, during the winter, it is comparatively cold. It is due to the absorption of a lesser amount of incoming solar radiation. The tilt of the earth is also responsible for this low temperature.
But, when the earth is farthest from the sun, during the summer, it is comparatively hot. It is due to the absorption of a large amount of incoming solar radiation.
Answer:
ones longer than the other daa
Explanation:
Answer:
The maximum speed the car can go before it star to slide is

Explanation:
Using the conservation of energy the force in motion is







Solve to v'

