1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
My name is Ann [436]
3 years ago
15

A resonant six-turn loop of closely spaced turns is operating at 50 MHz. The radius of the loop is λ/30, and the loop is connect

ed to a 50-ohm transmission line. The radius of the wire is λ/300, its conductivity is σ = 5.7 × 107 S/m, and the spacing between the turns is λ/100. Determine the:
a. the directivity of the antenna (in dB)
b. radiation efficiency taking into account the proximity effects of the turns
c. reflection efficiency gain of the antenna (in dB)

Engineering
1 answer:
Vinvika [58]3 years ago
6 0

Answer:

a) the directivity of the antenna is evaluated to be = 1.761db

b) radiation efficiency is evaluated to be  = 98.67%

c) reflection efficiency gain is evaluated to be =  68%

Explanation:

kindly check the attachment for step to step explanations for better understanding.

You might be interested in
It is the tool used to measure the amount of electric current​
sergeinik [125]

Answer:

Ammeter

Explanation:

Instrument for measuring either direct or alternating electric current, in amperes. Ammeters vary in their operating principles and accuracies

7 0
3 years ago
Read 2 more answers
The loneliest people are to kindest
valkas [14]

Answer:

The most damaged people are the wisest is a fact

Explanation:

5 0
3 years ago
Read 2 more answers
a vertical cylindrical container is being cooled in ambient air at 25 °C with no air circulation. if the initial temperature of
Sloan [31]

Answer:

the surface heat-transfer coefficient due to natural convection during the initial cooling period.  = 4.93 w/m²k

Explanation:

check attachement for answer explanation

7 0
3 years ago
Read 2 more answers
State five applications of thermochromic materials
rusak2 [61]

Explanation:

The end-use industries of thermochromic materials include packaging, printing & coating, medical, textile, industrial, and others. Printing & coating is the fastest-growing end-use industry of thermochromic materials owing to a significant increase in the demand for thermal paper for POS systems. The use of thermochromic materials is gaining momentum for interactive packaging that encourages consumers to take a product off the shelf and use it.

8 0
3 years ago
Initially when 1000.00 mL of water at 10oC are poured into a glass cylinder, the height of the water column is 1000.00 mm. The w
Dafna11 [192]

Answer:

\mathbf{h_2 =1021.9 \  mm}

Explanation:

Given that :

The initial volume of water V_1 = 1000.00 mL = 1000000 mm³

The initial temperature of the water  T_1 = 10° C

The height of the water column h = 1000.00 mm

The final temperature of the water T_2 = 70° C

The coefficient of thermal expansion for the glass is  ∝ = 3.8*10^{-6 } mm/mm  \ per ^oC

The objective is to determine the the depth of the water column

In order to do that we will need to determine the volume of the water.

We obtain the data for physical properties of water at standard sea level atmospheric from pressure tables; So:

At temperature T_1 = 10 ^ 0C  the density of the water is \rho = 999.7 \ kg/m^3

At temperature T_2 = 70^0 C  the density of the water is \rho = 977.8 \ kg/m^3

The mass of the water is  \rho V = \rho _1 V_1 = \rho _2 V_2

Thus; we can say \rho _1 V_1 = \rho _2 V_2;

⇒ 999.7 \ kg/m^3*1000 \ mL = 977.8 \ kg/m^3 *V_2

V_2 = \dfrac{999.7 \ kg/m^3*1000 \ mL}{977.8 \ kg/m^3 }

V_2 = 1022.40 \ mL

v_2 = 1022400 \ mm^3

Thus, the volume of the water after heating to a required temperature of  70^0C is 1022400 mm³

However; taking an integral look at this process; the volume of the water before heating can be deduced by the relation:

V_1 = A_1 *h_1

The area of the water before heating is:

A_1 = \dfrac{V_1}{h_1}

A_1 = \dfrac{1000000}{1000}

A_1 = 1000 \ mm^2

The area of the heated water is :

A_2 = A_1 (1  + \Delta t  \alpha )^2

A_2 = A_1 (1  + (T_2-T_1) \alpha )^2

A_2 = 1000 (1  + (70-10) 3.8*10^{-6} )^2

A_2 = 1000.5 \ mm^2

Finally, the depth of the heated hot water is:

h_2 = \dfrac{V_2}{A_2}

h_2 = \dfrac{1022400}{1000.5}

\mathbf{h_2 =1021.9 \  mm}

Hence the depth of the heated hot  water is \mathbf{h_2 =1021.9 \  mm}

4 0
3 years ago
Other questions:
  • What is pessimism technology
    12·1 answer
  • A stainless-steel specimen from the same material characterized up above, was formed into a rectangular cross-section of dimensi
    9·1 answer
  • A rigid, sealed tank initially contains 2000 kg of water at 30 °C and atmospheric pressure. Determine: a) the volume of the tank
    14·1 answer
  • Please help me in this assignment.
    13·1 answer
  • Arc blow typically occurs in steel and metals that contain iron.<br> True or false
    7·2 answers
  • What’s the population in the world and why does it keep increasing in bad areas.
    8·1 answer
  • Which of the following are made up of electrical probes and connectors?
    8·1 answer
  • A proposed embankment fill requires 7100 ft of compacted soil. The void ratio of the compacted fill is specified as 0.5. Four bo
    10·1 answer
  • How to comment other people
    9·2 answers
  • which type of irrigation fluid is typically used for endoscopic procedures using monopolar electrosurgery
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!