Answer:
A bona fide occupational qualification defense
Explanation:
Since the store is for women clothing, the retail may prefer to employ only female to assist the customers. Under a bona fide occupational qualification defense, an employer is allowed to discriminate if a characteristic is a necessity for the performance of the job and for the business. Therefore, the store has a bona fide occupational qualification defense.
Answer:
the width of the turning roadway = 15 ft
Explanation:
Given that:
A ramp from an expressway with a design speed(u) = 30 mi/h connects with a local road
Using 0.08 for superelevation(e)
The minimum radius of the curve on the road can be determined by using the expression:

where;
R= radius
= coefficient of friction
From the tables of coefficient of friction for a design speed at 30 mi/h ;
= 0.20
So;



R = 214.29 ft
R ≅ 215 ft
However; given that :
The turning roadway has stabilized shoulders on both sides and will provide for a onelane, one-way operation with no provision for passing a stalled vehicle.
From the tables of "Design widths of pavement for turning roads"
For a One-way operation with no provision for passing a stalled vehicle; this criteria falls under Case 1 operation
Similarly; we are told that the design vehicle is a single-unit truck; so therefore , it falls under traffic condition B.
As such in Case 1 operation that falls under traffic condition B in accordance with the Design widths of pavement for turning roads;
If the radius = 215 ft; the value for the width of the turning roadway for this conditions = 15ft
Hence; the width of the turning roadway = 15 ft
Answer:
N_A=1.5*10^-8 kmol/s.m^2
Explanation:
<u>KNOWN: </u>
Molar concentration of helium at the inner and outer surfaces of a plastic membrane. Diffusion coefficient and membrane thickness.
<u>FIND:</u>
Molar diffusion flux.
<u>ASSUMPTIONS:</u>
(1) Steady-state conditions, (2) One-dimensional diffusion in a plane wall, (3) Stationary medium, (4) Uniform C = C_A + C_B.
<u>ANALYSIS:</u> The molar flux may be obtained from
N_A=D_AB/L(C_A,1-C_A,2)
=10^-9 m^2/s/0.001 m(0.02-0.005)kmol/m^3
N_A=1.5*10^-8 kmol/s.m^2
<u>COMMENTS:</u> The mass flux is:
n_A,x=M_a*N_A,x
n_A,x=6*10^-8 kg/s m^2