GED proves that the test taker has United States or Canadian high-school level academic skills, it is a alternative to the US high school Diploma.
Hope this helps you ☁︎☀︎☁︎
Answer: C) a&c
Explanation: Composite materials are the materials which are made up of the two or more material of different properties.They are usually having properties like high hardness,low in density,no dissolving into each other etc. Whiskers as a dispersing agent in composite materials are usually not preferred because they are expensive as well as they are not easy to disperse in the composite material.Thus option (c) is the correct answer.
Answer:
The maximum theoretical height that the pump can be placed above liquid level is 
Explanation:
To pump the water, we need to avoid cavitation. Cavitation is a phenomenon in which liquid experiences a phase transition into the vapour phase because pressure drops below the liquid's vapour pressure at that temperature. As a liquid is pumped upwards, it's pressure drops. to see why, let's look at Bernoulli's equation:

(
stands here for density,
for height)
Now, we are assuming that there aren't friction losses here. If we assume further that the fluid is pumped out at a very small rate, the velocity term would be negligible, and we get:


This means that pressure drop is proportional to the suction lift's height.
We want the pressure drop to be small enough for the fluid's pressure to be always above vapour pressure, in the extreme the fluid's pressure will be almost equal to vapour pressure.
That means:

We insert that into our last equation and get:

And that is the absolute highest height that the pump could bear. This, assuming that there isn't friction on the suction pipe's walls, in reality the height might be much less, depending on the system's pipes and pump.
Answer:
The modulus of resilience is 166.67 MPa
Explanation:
Modulus of resilience is given by yield strength ÷ strain
Yield strength = 500 MPa
Strain = 0.003
Modulus of resilience = 500 MPa ÷ 0.003 = 166.67 MPa
Answer: r = 0.8081; s = -0.07071
Explanation:
A = (150i + 270j) mm
B = (300i - 450j) mm
C = (-100i - 250j) mm
R = rA + sB + C = 0i + 0j
R = r(150i + 270j) + s(300i - 450j) + (-100i - 250j) = 0i + 0j
R = (150r + 300s - 100)i + (270r - 450s - 250)j = 0i + 0j
Equating the i and j components;
150r + 300s - 100 = 0
270r - 450s - 250 = 0
150r + 300s = 100
270r - 450s = 250
solving simultaneously,
r = 0.8081 and s = -0.07071
QED!