Answer:
The first step is to identify the need and constraints
Explanation:
Explanation:
There are two ways to find out the equivalent impulse response of the system.
1. Convolution in time domain
2. Simple multiplication in Laplace domain
2nd method is efficient, easy and is less time consuming.
Step 1: Take the Laplace transform of the given three impulse response functions to convert time domain signals into s-domain
Step 2: Once we get signals in s-domain, multiply them algebraically to get the equivalent s-domain response.
Step 3: Take inverse Laplace transform of the equivalent impulse response to convert from s-domain into time domain.
Solution using Matlab:
Step 1: Take Laplace Transform
Ys1 = 1/(s + 1)
Ys2 = 1/s - exp(-s/2)/s
Ys3 = exp(-3*s)
Step 2: Multiplication in s-domain
Y = (exp(-(7*s)/2)*(exp(s/2) - 1))/(s*(s + 1))
Step 3: Inverse Laplace Transform (Final Solution in Time Domain)
h = heaviside(t - 7/2)*(exp(7/2 - t) - 1) - heaviside(t - 3)*(exp(3 - t) - 1)
Answer:
R = 148.346 N
M₀ = - 237.2792 N-m
Explanation:
Point O is selected as a convenient reference point for the force-couple system which is to represent the given system
We can apply
∑Fx = Rx = - 60N*Cos 45° + 40N + 80*Cos 30° = 66.8556 N
∑Fy = Ry = 60N*Sin 45° + 50N + 80*Sin 30° = 132.4264 N
Then
R = √(Rx²+Ry²) ⇒ R = √((66.8556 N)²+(132.4264 N)²)
⇒ R = 148.346 N
Now, we obtain the moment about the origin as follows
M₀ = (0 m*40 N)-(7 m*60 N*Sin 45°)+(4 m*60 N*Cos 45°)-(5 m*50 N)+ 140 N-m + (0 m*80 N*Cos 30°) + (0 m*80 N*Sin 30°) = - 237.2792 N-m (clockwise)
We can see the pic shown in order to understand the question.