Answer:
Massive destruction
Explanation:
If the asteroid collides with the ground, a massive volume of dust will be blasted into the environment. If it collides with water, the amount of water vapour in the atmosphere will rise. This would result in more rain, which would cause earthquakes and mudslides.
As the asteroid collided with the Earth, massive volumes of dust were ejected into to the atmosphere. The sun's light were stopped from entering the Earth's surface, which is terrible news for plants.
Answer:
(a) 6.91 mm (b) 160 MPa
Explanation:
Solution
Given that:
E = 200 GPa
The rod length = 48 mm
P =P¹ = 6 kN
Recall that,
1 kN = 10^3 N
1 m =10^3 mm
I GPa = 10^9 N/m²
Thus
The rod deformation is stated as follows:
δ = PL/AE-------(1)
σ = P/A----------(2)
Now,
(a) We substitute the values in equation and obtain the following:
48 * 10 ^⁻3 m = (6 * 10³ N) (60 m)/A[ 200 * 10^9 N/m^2]
Thus, we simplify
A = (6 * 10³) (60)/ ( 200 * 10^9) (48 * 10 ^⁻3)m²
A =0.0375 * 10 ^⁻3 m²
A =37.5 mm²
A = π/4 d²
Thus,
d² = 4A /π
After inserting the values we have,
d = √37.5 * 4/3.14 mm
= 6.9116 mm
or d = 6.91 mm
Therefore, the smallest that should be used is 6.91 mm
(B) To determine the corresponding normal stress that is caused by the tensile force, we input the values in equation (2)
Thus,
σ = P/A
σ= 6 * 10 ^ 3 N/ 37. 5 * 10 ^⁻6 m²
σ= 160 MPa
Note: I MPa = 10^6 N/m²
Hence the the corresponding normal stress is σ= 160 MPa
Answer:
a) -505.229 kJ/Kg
b) -1.724 kJ/kg
Explanation:
T1 = 400°C
P1 = 3 MPa
P2 = 125 kPa
work output = 530 kJ/kg
surrounding temperature = 20°C = 293 k
<u>A) Calculate heat transfer from Turbine to surroundings </u>
Q = h2 + w - h1
h ( enthalpy )
h1 = 3231.229 kj/kg
enthalpy at P2
h2 = hg = 2676 kj/kg
back to equation 1
Q = 2676 + 50 - 3231.229 = -505.229 kJ/Kg ( i.e. heat is lost )
<u>b) Entropy generation </u>
entropy generation = Δs ( surrounding ) + Δs(system)
= - 505.229 / 293 + 0
= -1.724 kJ/kg