A measure of thermal energy transferred between two different bodies at different temperatures would be the correct answer. So, the third option.
I think the correct answer from the choices listed above is option B. The reactants calcium sulfide and sodium sulfate will react and form a precipitate which is calcium sulfate since it is only slightly soluble in aqueous solution. Hope this answers the question.
Answer is: <span>the charge of the iron in this compound is +2.
Atomic mass of iron is 55,8 g/mol.
Atomic mass of chlorine is 35,5 g/mol.
If compound is FeCl, molar mass would be 55,8 </span>g/mol + 35,5 g/mol = 91,3 g/mo, that is not correct.
If compound is FeCl₂, malar mass of compound would be:
55,8 g/mol + 2·35,5 g/mol = 126,8 g/mol, that is correct.
Oxaidation number of chlorine is -1.
Answer:
The amount of work done on the system is 18234 J and the final positive sign means that this work corresponds to an increase in internal energy of the gas.
Explanation:
Thermodynamic work is called the transfer of energy between the system and the environment by methods that do not depend on the difference in temperatures between the two. When a system is compressed or expanded, a thermodynamic work is produced which is called pressure-volume work (p - v).
The pressure-volume work done by a system that compresses or expands at constant pressure is given by the expression:
W system= -p*∆V
Where:
- W system: Work exchanged by the system with the environment. Its unit of measure in the International System is the joule (J)
- p: Pressure. Its unit of measurement in the International System is the pascal (Pa)
- ∆V: Volume variation (∆V = Vf - Vi). Its unit of measurement in the International System is cubic meter (m³)
In this case:
- p= 10 atm= 1.013*10⁶ Pa (being 1 atm= 101325 Pa)
- ΔV= 2 L- 20 L= -18 L= -0.018 m³ (being 1 L=0.001 m³)
Replacing:
W system= -1.013*10⁶ Pa* (-0.018 m³)
Solving:
W system= 18234 J
<u><em>The amount of work done on the system is 18234 J and the final positive sign means that this work corresponds to an increase in internal energy of the gas.</em></u>
Answer: 50 degrees Celsius is hotter than 50 degrees F. 50 degrees Celsius is half way between freezing and boiling