Option 3 using forest land to build homes
Well in this
case, silver
nitrate is reduced:
Ag<span>+ </span><span>+ </span>e<span>− </span>→ Ag(s) ↓
Meanwhile, the aluminum
is oxidized forming a positive ion:
Al(s<span>) → </span>Al<span>3+ </span><span>+ 3</span>e−
To get the
overall reaction, we add the half
equations so that the electrons are eliminated:
Al(s<span>) + 3</span>Ag<span>+ </span><span>→ </span>Al<span>3+ </span><span>+ 3</span>Ag(s)
And similarly:
Al(s<span>) + 3</span>AgNO3(aq<span>) → </span>Al(NO3)3(aq<span>) + 3</span>Ag(s<span>)</span>
Answer:
weigh it and divide the weight by the molecular weight. :) good luck!!
Explanation:
The density of an object or quantity of matter is its mass divided by its volume.
<span>Molality(m) or molal concentration is a measure
of concentration and it refers to amount of substance in a specified amount of
mass of the solvent. Used unit for molality is mol/kg which is also
sometimes denoted as 1 molal. It is equal to the moles of solute (the substance
being dissolved) divided by the kilograms of solvent (the substance used to
dissolve).</span>
Molarity(M) or molar concentration is also a
measure of concentration and represents the amount of substance per unit volume
of solution(number of moles per litre of solution. Used unit for molarity is
mol/L or M. A solution with a concentration of 1 mol/L is equivalent to 1 molar
(1 M).
Molality is preferred when
the temperature of the solution varies, because it does not depend on
temperature, (neither number of moles of solute nor mass of solvent will be affected
by changes of temperature), while molarity changes as temperature changes(volume
of solution changes as temperature changes).