1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KatRina [158]
3 years ago
12

Calculate the angular momentum, in kg · m2/s, of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.310 kg ·

m2. kg · m2/s (b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia, in kg · m2, if his angular velocity drops to 2.45 rev/s. kg · m2 (c) Suppose instead he keeps his arms in and allows friction with the ice to slow him to 3.00 rev/s. What average torque, in N m, was exerted if this takes 18.0 seconds? (Indicate the direction with the sign of your answer. Assume that the skater's rotation is in the positive direction.) N · m
Physics
2 answers:
steposvetlana [31]3 years ago
8 0

Answer:

a) 11.7 kg. m2/s b) 0.76 Kg. m2 c) -0.33 N.m

Explanation:

a)

  • Assuming no external torques act on the skater, total angular momentum must be conserved:

        L1 = L2

        As the angular momentum can be calculated as the

        product of the moment of inertia times the angular velocity,

we can write:

       I1*ω1 = I2*ω2  

       The initial angular momentum can be written as follows:

       I1*ω1= 0.31 kg.m2 * 6.0 rev/sec  

       As we need to express the angular momentum in kg.m2/s, we need to convert the angular velocity units, from rev/sec to rad/sec, as follows:

       ω1= 6.0 rev/sec (2π rad/ rev) = 12 π rad/sec

       I1*ω1= 0.31 kg.m2 * 12 π rad/sec = 11.7 kg. m2/s

b)

  • As the final angular momentum must be the same, and we know the value of the final angular velocity, we can replace by the values in L2, and solve for I2, as follows:

        I2 = I1*( ω1 / ω2) = 0.31 kg. m2 . 6.0/2.45 = 0.76 kg.m2

c)

  • If an external torque is present, we can write the following equation, that relates the external torque with the rotational inertia and the angular acceleration, as follows:

        Τ= I *γ (1)

        Where γ, is the angular acceleration.

        By definition, γ is the rate of change of the angular velocity,

        so if we have the values of  the initial and final angular

        velocities, and the time passed, we can express γ as

follows:

       γ= (ω2 – ω1) / t

       In order to express γ in rad/sec2, we need to convert the

angular  velocities (given in rev/sec), to rad/sec, as follows:

       ω1= 6.0 rev/sec (2π rad/ rev) = 12 π rad/sec

       ω2= 3.0 rev/sec (2π rad/ rev) = 6 π rad/sec

       Solving for γ:

       γ = -6 π / 18. 0 rad/sec2 = -1.05 rad/sec2

       Replacing in (1), we have:

       τ= 0.31 kg. m2.*(-1.05 rad/sec2) = -0.33 N.m

Brrunno [24]3 years ago
3 0

Answer:

a) The angular momentum is 11.69 kg m²/s

b) The moment of inertia is 0.76 kg m²

c) The torque is -0.3255 N

Explanation:

please look at the solution in the attached Word file

Download docx
You might be interested in
The SI unit that is used to measure time is the
Sunny_sXe [5.5K]

Answer:second

Explanation:

4 0
3 years ago
Read 2 more answers
Which of the the following distance vs time graphs represents an object the is moving at constant non zero velocity
mario62 [17]
A graph with a horizontal line
8 0
3 years ago
At its natural resting length, a muscle is close to its optimallength for producing force. As the muscle contracts, the maximumf
lesantik [10]

Answer:

Figure E is the correct representation of the first part of the motion. When in a hanging position from the chin-up bar, the bicep muscles are stretched beyond their normal length already. So at this point they are at the peak of their capacity and you are at rest (this corresponds to the velocity v = 0 at t = 0). On contracting the bicep muscles and pulling your whole body up, you begin to gain speed and v increases. This increase in velocity is exponential. Soon the bicep muscles contract up to 80% their normal length reducing the force they can produce to keep you rising up to zero. The velocity change happens because the body is accelerating and the muscles can still supply a net force to lift you up. The acceleration is present because of this net force. The moment this force reduces to zero, the acceleration too reduces to zero. (From Newton's second law of motion). This reduction in acceleration is responsible for the reduction of the curvature of the v curve in figure E above. The point where the velocity becomes horizontal corresponds to the point where the muscles reach their maximum contraction unit and can supply no more net force and as a result no acceleration. This further results inba constant velocity which is the flat nature of the curve seen in diagram E.

Thank you for reading.

Explanation:

5 0
3 years ago
Give me 2 animals to combine their inherited traits
Kazeer [188]

Answer:

dogs and cats

Explanation:

hope this helps

7 0
2 years ago
Read 2 more answers
You are making a circular turn in your car on a horizontal road when you hit a big patch of ice, causing the force of friction b
adell [148]

Answer:

c

Explanation:

The car travels with centripetal acceleration which is directed to the center of the circle but the velocity is changing since the car faces different direction as it travels in the circular direction. When the friction is zero between the tires of the car and the road, it will continue in the direction of its tangential velocity which will be along a straight-line path in its original direction.

4 0
2 years ago
Other questions:
  • What other structures is it near hypothalamus?
    10·1 answer
  • Please help asap. I'm terrible with atoms
    13·2 answers
  • Thoroughly explain how to balance this chemical equation.
    15·1 answer
  • A Circular loop in the plane of a paper lies in a 0.65 TT magnetic field pointing into the paper. The loop's diameter changes fr
    14·1 answer
  • 1. My grass is dying, and I believe it's because it is not getting enough water. Sol
    12·1 answer
  • You are driving downhill on a rural road with a 3% grade at a speed of 45 mph. While playing on the side of the road, a child ac
    8·1 answer
  • What is the acceleration of a 50 kg object pushed with a net force of 500 newtons?
    14·1 answer
  • Will give brainliest!!
    15·1 answer
  • Is it possible for an object to change its weight without changing its mass? Explain why or why not
    13·1 answer
  • Arrange the stars based on their temperature. Begin with the coolest star, and end with the hottest star.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!