1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KatRina [158]
3 years ago
12

Calculate the angular momentum, in kg · m2/s, of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.310 kg ·

m2. kg · m2/s (b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia, in kg · m2, if his angular velocity drops to 2.45 rev/s. kg · m2 (c) Suppose instead he keeps his arms in and allows friction with the ice to slow him to 3.00 rev/s. What average torque, in N m, was exerted if this takes 18.0 seconds? (Indicate the direction with the sign of your answer. Assume that the skater's rotation is in the positive direction.) N · m
Physics
2 answers:
steposvetlana [31]3 years ago
8 0

Answer:

a) 11.7 kg. m2/s b) 0.76 Kg. m2 c) -0.33 N.m

Explanation:

a)

  • Assuming no external torques act on the skater, total angular momentum must be conserved:

        L1 = L2

        As the angular momentum can be calculated as the

        product of the moment of inertia times the angular velocity,

we can write:

       I1*ω1 = I2*ω2  

       The initial angular momentum can be written as follows:

       I1*ω1= 0.31 kg.m2 * 6.0 rev/sec  

       As we need to express the angular momentum in kg.m2/s, we need to convert the angular velocity units, from rev/sec to rad/sec, as follows:

       ω1= 6.0 rev/sec (2π rad/ rev) = 12 π rad/sec

       I1*ω1= 0.31 kg.m2 * 12 π rad/sec = 11.7 kg. m2/s

b)

  • As the final angular momentum must be the same, and we know the value of the final angular velocity, we can replace by the values in L2, and solve for I2, as follows:

        I2 = I1*( ω1 / ω2) = 0.31 kg. m2 . 6.0/2.45 = 0.76 kg.m2

c)

  • If an external torque is present, we can write the following equation, that relates the external torque with the rotational inertia and the angular acceleration, as follows:

        Τ= I *γ (1)

        Where γ, is the angular acceleration.

        By definition, γ is the rate of change of the angular velocity,

        so if we have the values of  the initial and final angular

        velocities, and the time passed, we can express γ as

follows:

       γ= (ω2 – ω1) / t

       In order to express γ in rad/sec2, we need to convert the

angular  velocities (given in rev/sec), to rad/sec, as follows:

       ω1= 6.0 rev/sec (2π rad/ rev) = 12 π rad/sec

       ω2= 3.0 rev/sec (2π rad/ rev) = 6 π rad/sec

       Solving for γ:

       γ = -6 π / 18. 0 rad/sec2 = -1.05 rad/sec2

       Replacing in (1), we have:

       τ= 0.31 kg. m2.*(-1.05 rad/sec2) = -0.33 N.m

Brrunno [24]3 years ago
3 0

Answer:

a) The angular momentum is 11.69 kg m²/s

b) The moment of inertia is 0.76 kg m²

c) The torque is -0.3255 N

Explanation:

please look at the solution in the attached Word file

Download docx
You might be interested in
If a velocity is positive which would most likely yield a negative acceleration
Aleksandr [31]

Answer:

A time that is less than half an hour

Explanation:

it says velocity is positive so it would yield to a negative acceleration

5 0
3 years ago
A ball is thrown straight up with a launch of 3 m/s.
PtichkaEL [24]

Explanation:

The ball is in free fall (gravity is the only force acting on the ball), so its acceleration is 9.8 m/s² down during the entire path.

7 0
3 years ago
Robert dropped his new iPhone from his balcony. It hit the ground 3.5 seconds later. What was the height of his balcony?
Lorico [155]

its B. 60 meters

Explanation:

cause I looked up a calculator and solved it

8 0
3 years ago
Two parallel-plate capacitors have the same plate area, but the plate gap in capacitor 1 is twice as big as capacitor 2. If capa
-BARSIC- [3]

Answer:

Capacitance of the second capacitor = 2C

Explanation:

\texttt{Capacitance, C}=\frac{\varepsilon_0A}{d}

Where A is the area, d is the gap between plates and ε₀ is the dielectric constant.

Let C₁ be the capacitance of first capacitor with area A₁ and gap between plates d₁.

We have    

              \texttt{Capacitance, C}_1=\frac{\varepsilon_0A_1}{d_1}=C

Similarly for capacitor 2

               \texttt{Capacitance, C}_2=\frac{\varepsilon_0A_2}{d_2}=\frac{\varepsilon_0A_1}{\frac{d_1}{2}}=2\times \frac{\varepsilon_0A_1}{d_1}=2C

Capacitance of the second capacitor = 2C

6 0
3 years ago
In a compound, the atom does or does not take on a new set of properties
disa [49]
It does take on new set of proerties
7 0
3 years ago
Other questions:
  • When you walk at an average speed (constant speed, no acceleration) of 24 m/s in 94.1 sec
    6·1 answer
  • 1)
    15·1 answer
  • A transformation of ΔSTV results in ΔUTV. Which transformation maps the pre-image to the image?
    13·2 answers
  • Tectonic plates move ________. A. about a kilometer per year B. at different speeds C. about one yard per year D. at the same sp
    11·1 answer
  • In a position vs. time graph depicting the motion of two different objects, the point at which the lines intersect is where the
    6·1 answer
  • Correct unit of speed
    11·2 answers
  • When a narrow laser beam passes through a fine wire mesh before arriving at the wall, it forms a complicated pattern of bright s
    7·1 answer
  • What is newton's gravitational constant? write down its value and SI until​
    6·1 answer
  • A position versus time graph is shown:
    10·1 answer
  • Which of the following best explains why energy transfers are never 100%
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!