Answer:
Explanation:
The correct answer is Metabolic alkalosis (D). A pH of 7.48 shows slight alkalinity, this normal concentration of Co2 in the blood ranges from 35 mmHg (millimetre Mercury) to 45 mmHg and the normal HCo3 ( Hydrogen trioxo carbonate ion) concentration ranges from 22mEq/L to 26mEq/L.
Therefor the patients pH level is high the Co2 level is normal and the HCo3 level is high. Hence, Metabolic alkalosis
Answer:
thermodynamics
Explanation:
The laws of thermodynamics define a group of physical quantities, such as temperature, energy, and entropy, that characterize thermodynamic systems in thermodynamic equilibrium.
Answer:
High pressure inside the giant planet
Explanation:
As we move in the interior of the giant planet, the pressure and temperature in the interior of the planet increases. Since, the giant planets have hardly any solid surface and thus they are mostly constituted of atmosphere.
Also, the gravitational forces keep even the lightest of the matter bound in it contributing to the large mass of the planet.
If we look at the order of the magnitude of the temperature of these giant planets than nothing should be able to stay in liquid form but as the depth of the planet increases with the increase in temperature, pressure also increases which keeps the particle of the matter in compressed form.
Thus even at such high order of magnitude water is still found in liquid state in the interior of the planet.
Electromagnetic waves need no matter to travel - they can travel through empty space (a vacuum). In a vacuum, all electromagnetic waves travel at approximately 3 x 108 m/s - which is the fastest speed possible. ...
Light traveling value through an optical Fibre is, 2 x 108 m/s. Hope that helps.
80000 Joule is the change in the internal energy of the gas.
<h3>In Thermodynamics, work done by the gas during expansion at constant pressure:</h3>
ΔW = -pdV
ΔW = -pd (V₂ -V₁)
ΔW = - 1.65×10⁵ pa (0.320m³ - 0.110m³)
= - 0.35×10⁵ pa.m³
= - 35000 (N/m³)(m³)
= -35000 Nm
ΔW = -35000 Joule
Therefore, work done by the system = -35000 Joule
<h3>Change in the internal energy of the gas,</h3>
ΔV = ΔQ + ΔW
Given:
ΔQ = 1.15×10⁵ Joule
ΔW = -35000 Joule
ΔU = 1.15×10⁵ Joule - 35000 Joule
= 80000 Joule.
Therefore, the change in the internal energy of the gas= 80000 Joule.
Learn more about thermodynamics here:
brainly.com/question/14265296
#SPJ4