Answer:
As ice melts into water, kinetic energy is being added to the particles. This causes them to be 'excited' and they break the bonds that hold them together as a solid, resulting in a change of state: solid -> liquid.
Explanation:
As we may know, the change in state of an object is due to the change in the average kinetic energy of the particles.
This average kinetic energy is proportional to the temperature of the particles.
This is because heat is a form of energy; by adding energy to ice - heat, you "excite" the water molecules, breaking the interactions in the lattice structure and forming weaker, looser hydrogen-bonding interactions.
This causes the ice to melt. This is demonstrated in the image below.
More generally, when you remove energy - the object cools down, the particles move a lot slower. So slow, that they individually attract other molecules more than before, and this results in a physical change that also changes the state.
Answer: Technician B is right.
Explanation:
Evacuation process is used in refrigeration systems to remove moisture, air and non-profit condensable gases in order to achieve maximum function of the system.
vacuum pump is used to draw the sealed AC system into a vacuum. Evacuation of a refrigerant system also helps to maintain pressure, this is so as pulling a vacuum on the system is simply removing matter (mostly air and nitrogen) from inside the system so that the pressure inside drops below atmospheric pressure.
9*
m
Explanation:
Step 1:
We are given the initial length of the Pyrex glass dish at a particular temperature and need to calculate the change in the length when the temperature changes by 120° C. The coefficient of linear expansion of Pyrex is provided.
Step 2:
Change in length = Coefficient of linear expansion * Change in temperature * Initial length
Step 3:
Coefficient of linear expansion = 3*
/°C
Change in temperature = 120°C = 120 K
Initial length = 0.25 m
Step 4:
Change in length = 3*
* 120 * 0.25 = 9*
m
<span>How many electrons would it take to equal the mass of a proton:
Here's one way of finding the value of it:
=> number of electrons is equivalent to 1 proton.
Let's have an example.
1.6726*10 -24g
_______________
1 proton
______________
9.109*10- ^28g
_______________
1 electron
Based on the given example above, the electrons is 1 839 per 1 proton.
It's about 1800 electrons/proton.</span>
1.) potential energy
2.)potential and kinetic
3.)The roller coaster car has the most kinetic energy at point X i know this because the car is moving and kinetic energy has the power to move or change things therefore point X is when the roller coaster car has the most energy.
4.)potential energy
5.)kinetic energy
6.) potential and kinetic energy