The gravitational force between a mass and the Earth is the object'sweight. Mass is considered a measure of an object's inertia, and its weight is the force exerted on the object in a gravitational field. On the surface of the Earth, the two forces are related by the acceleration due to gravity: Fg = mg.
Hoped this helped!
Answer:
Normal, Gravity, Friction, and Air Resistance.
Explanation:
When a moving car skid to stop and its wheels are locked across, then the following forces will be applied on the car:
<u>Normal force:</u> It will act counter to gravity that pushes an object against a surface and acts perpendicular to the contact surface.
<u>Gravity:</u> Gravity force acts in each and every object having mass and it can not be avoidable. So, the gravity force will also apply to the car and attract it to the earth's surface.
<u>Friction: </u>Friction is a force that acts opposite to the motion and stops or slows motion. Friction will be applied to the car that will oppose the motion of the car and stop it.
<u>Air resistance:</u> air resistance is defined as the forces exerted by air that acts opposite to the relative motion of an object. Air resistance will also be applied to the car when it will skid to stop as we are always surrounded by the air.
Hence, the correct answers are "Normal, Gravity, Friction, and Air Resistance."
Answer:
94.1 m
Explanation:
From Coulombs law,
F = Gm1m2/r²................... Equation 1
where F = force, m1 = first mass, m2 = second mass, G = universal constant, r = distance of separation.
Make r the subject of the equation,
r = √(Gm1m2/F)................. Equation 2
Given: F = 7×10² N, m1 = 15×10⁷ kg, m2 = 62×10⁷ kg,
Constant: G = 6.67×10⁻¹¹ Nm²/kg²
Substitute into equation 2
r = √( 6.67×10⁻¹¹×15×10⁷×62×10⁷/7×10²)
r √(886.16×10)
r √(88.616×10²)
r = 9.41×10
r = 94.1 m.
Hence the distance of separation = 94.1 m
OPTION A if it’s for Plato