Answer:
As given that the car maintains a constant speed v as it traverses the hill and valley where both the valley and hill have a radius of curvature R.
(i) At point C, the normal force acting on the car is largest because the centripetal force is up. gravity is down and normal force is up. net force is up so magnitude of normal force must be greater than the car's weight.
(ii) At point A, the normal force acting on the car is smallest because the centripetal force is down. gravity is down and normal force is up. net force is up so magnitude of normal force must be less than car's weight.
(iii) At point C, the driver will feel heaviest because the driver's apparent weight is the normal force on her body.
(iv) At point A, the driver will feel the lightest.
(v)The car can go that much fast without losing contact with the road at A can be determined as follow:
Fn=0 - lose contact with road
Fg= mv²/r
mg=mv²/r
v=sqrt (gr)
Answer:
Explanation:
When the apple is held submerged in water , it experiences a buoyant force due to which it floats in water . One has to apply downward force to keep it submerged. The lower the buoyant force , lower the force needed to submerge it in water.
When apple is held at much deeper point , it experience greater pressure due to column of water around it . So its size or its volume decreases . But its weight remains the same . Due to less volume , buoyant force also decreases ( buoyant force is equal to weight of displaced volume of water. )
Due to buoyant force becoming less , force needed on apple in downward direction will also be less.
Data????????????????????????????
The answer is Air Resistance