Answer:
decrease the height
Explanation:
height is directly proportional to the g.p.e
Answer:
c. 0.80
Explanation:
they will choose the path that has not resistance
Answer: b. Throw it directly away from the space station.
Explanation:
According to <u>Newton's third law of motion</u>, <em>when two bodies interact between them, appear equal forces and opposite senses in each of them.</em>
To understand it better:
Each time a body or object exerts a force on a second body or object, it (the second body) will exert a force of equal magnitude but in the opposite direction on the first.
So, if the astronaut throws the wrench away from the space station (in the opposite direction of the space station), according to Newton's third law, she will be automatically moving towards the station and be safe.
Answer:
The speed the bat is gaining on its prey is 0.03m/s
Explanation:
Given;
speed of the bat, v₀ = 3.7 m/s
frequency of the bat, F₀ = 36 kHz
frequency of the source, Fs = 36.79
This is relative motion between a source of the sound and the observer. The phenomenon is known as Doppler effect.
Apply the following equation to determine the speed of the insect which is the source;
![F_0 = F_s[\frac{v+v_0}{v-v_s} ]\\\\\frac{F_0}{F_s} = [\frac{v+v_0}{v-v_s} ]\\\\\frac{36.79}{36} = \frac{340+3.7}{340-v_s}\\\\1.0219 = \frac{343.7}{340-v_s}\\\\ 340-v_s = \frac{343.7}{1.0219}\\\\340-v_s = 336.33\\\\v_s = 340-336.33\\\\v_s = 3.67 \ m/s](https://tex.z-dn.net/?f=F_0%20%3D%20F_s%5B%5Cfrac%7Bv%2Bv_0%7D%7Bv-v_s%7D%20%5D%5C%5C%5C%5C%5Cfrac%7BF_0%7D%7BF_s%7D%20%3D%20%5B%5Cfrac%7Bv%2Bv_0%7D%7Bv-v_s%7D%20%5D%5C%5C%5C%5C%5Cfrac%7B36.79%7D%7B36%7D%20%3D%20%5Cfrac%7B340%2B3.7%7D%7B340-v_s%7D%5C%5C%5C%5C1.0219%20%3D%20%5Cfrac%7B343.7%7D%7B340-v_s%7D%5C%5C%5C%5C%20%20340-v_s%20%3D%20%5Cfrac%7B343.7%7D%7B1.0219%7D%5C%5C%5C%5C340-v_s%20%3D%20336.33%5C%5C%5C%5Cv_s%20%3D%20340-336.33%5C%5C%5C%5Cv_s%20%3D%203.67%20%5C%20m%2Fs)
The speed the bat is gaining on its prey = 3.7m/s - 3.67m/s = 0.03 m/s
Therefore, the speed the bat is gaining on its prey is 0.03m/s