Na2C2O4(aq) + CaCl2(aq) -----> 2NaCl(aq) + CaC2O4(s)
Here, CaC2O4(s) is a precipitate in the reaction as a result of precipitation reaction or double displacement reaction.
As we know that double displacement reaction two metal ions displaces each other from their salt solutions.
As we know that precipitation reaction is a reaction in which precipitate is formed.
Answer:
See explanation
Explanation:
Chlorine is a member of the halogen family known as a toxic yellowish green gas. Inhalation of chlorine for a prolonged period of time leads to pulmonary edema. If a person comes in contact with compressed liquid chlorine the person may experience frostbite of the skin and eyes.
However chlorine is very useful in water disinfection and is preferred in water treatment because it provides residual disinfection of the treated water.
Chlorine gas may be dissolved in NaOH to form oxochlorate I which is used as a bleach in cleaning.
Answer:
9.8 × 10²⁴ molecules H₂O
General Formulas and Concepts:
<u>Atomic Structure</u>
- Reading a Periodic Table
- Moles
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Organic</u>
<u>Stoichiometry</u>
- Analyzing reaction rxn
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
[RxN - Unbalanced] CH₄ + O₂ → CO₂ + H₂O
[RxN - Balanced] CH₄ + 2O₂ → CO₂ + 2H₂O
[Given] 130 g CH₄
<u>Step 2: Identify Conversions</u>
Avogadro's Number
[RxN] 1 mol CH₄ → 2 mol H₂O
[PT] Molar Mass of C: 12.01 g/mol
[PT] Molar Mass of H: 1.01 g/mol
Molar Mass of CH₄: 12.01 + 4(1.01) = 16.05 g/mol
<u>Step 3: Stoichiometry</u>
- [DA] Set up conversion:

- [DA] Divide/Multiply [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs.</em>
9.75526 × 10²⁴ molecules H₂O ≈ 9.8 × 10²⁴ molecules H₂O
Answer:
Explanation:
The triple point of carbon dioxide is 5.11 atmosphere at -56.6 degree celsius . At pressure greater than 5.11 , solid carbon dioxide liquefies , as it is warmed. At pressure lesser than 5.11 atmosphere , it will go into gaseous state without liquefying . Excessive pressure helps liquification process.
So maximum pressure required is 5.11 atmosphere. Beyond this pressure , solid CO2 will liquify.
1.3 kJ/kg K x 5 kg x 200C = 1300 kJ
The answer is <span>1,314,718 J</span>