Ionic bonds with electrostatic attractions
Answer:
the height (in feet) of the cliff is 121 ft
Explanation:
A stone hit the cliff with
speed, v = 88 ft/s
Acceleration, a= 32 ft/s^2
initial speed, u = 0 ft/s
height is h.
To solve this problem we will apply the linear motion kinematic equations, Equation of motion describes change in velocity, depending on the acceleration and the distance traveled
so, writing the formula of Equation of motion:
v^2 - u^2 = 2*a*h
substituting the appropriate values,
(88)^2 - 0 = 2*32* h
h=(88)^2 / 64
h= 121 ft
hence
the height (in feet) of the cliff is 121 ft
learn more about height of the cliff here:
<u>brainly.com/question/24130198</u>
<u />
#SPJ4
Complete question:
A diver is 10 m below the surface of water. Calculate the pressure the fluid exerted on the diver. The acceleration of gravity is 9.8 m/s2 and the density of the water is 1000 kg/m3. Answer in units of Pa. Show your work.
Answer:
Tthe pressure the fluid exerted on the diver is 1.99 x 10⁵ Pa
Explanation:
Given;
density of water, ρ = 1000 kg/m³
diver's position below the surface of the water, h = 10 m
acceleration due to gravity, g = 9.8 m/s²
Let the atmospheric pressure, P₀ = 101325 Pa
The pressure 10 m below the surface of the water is calculated as;
P = P₀ + ρgh
P = 101325 Pa + (1000 x 9.8 x 10)Pa
P = 199325 Pa
P = 1.99 x 10⁵ Pa.
Therefore, the pressure the fluid exerted on the diver is 1.99 x 10⁵ Pa
Answer:
I think it's 3
Explanation:
Can I have brainliest? It would help me out, if not thanks anyways! Hope this helped and have a nice day!
Answer:
lift per meter of span = 702 N/m
Explanation:
See attached pictures.