Answer:
15.66 rad/s
Explanation:
The vertical motion and horizontal motion are independent of each other.
t = √ ( 2 s/ g) where t = time for the ball to reach the ground and s is the height of the cliff = 18.0 m
t = √ ( 36 / 9.81 ) = 1.916 secs
horizontal distance travel = ut where u is the horizontal velocity of the stone = 30 × r (radius)
tangential velocity V = angular velocity ( ω) × radius
distance traveled = ω × r × t = 30 × r
radius cancelled on both side
ω = 30 / 1.9156 = 15.66 rad/s
Answer:
Well it would be equal to 500N because pushing forward the ball (or whatever maybe a body) would push the canon back an even 500N backwards...
Explanation:
Answer:
W_apparent = 93.1 kg
Explanation:
The apparent weight of a body is the weight due to the gravitational attraction minus the thrust due to the fluid where it will be found.
W_apparent = W - B
The push is given by the expression of Archimeas
B = ρ_fluide g V
ρ_al = m / V
m = ρ_al V
we substitute
W_apparent = ρ_al V g - ρ_fluide g V
W_apparent = g V (ρ_al - ρ_fluide)
we calculate
W_apparent = 980 50 (2.7 - 0.8)
W_apparent = 93100 g
W_apparent = 93.1 kg
The appropriate response is the third one. A generator is utilized to enact the control poles which contain radioactive isotopes. Once initiated, these isotopes start an atomic splitting chain response. Water in a cooling tank monitors the rate of response as electrons radiated from the response are encouraged through wires to homes and organizations.
Answer:
<u>We are given:</u>
displacement (s) = 130 m
acceleration (a) = -5 m/s²
final velocity (v) = 0 m/s [the cars 'stops' in 130 m]
initial velocity (u) = u m/s
<u>Solving for initial velocity:</u>
From the third equation of motion:
v² - u² = 2as
replacing the variables
(0)² - (u)² = 2(-5)(130)
-u² = -1300
u² = 1300
u = √1300
u = 36 m/s