To determine the molar mass, you need to get the atomic mass of the molecule. To do this, check the periodic table for the atomic mass or average atomic weight of each element.
Mg = 24.305 x 1 = 24.305 amu
O = 15.9994 x 2 =31.9988 amu
H = 1.0079 x 2 = 2.0158 amu
Then, add all the components to get the atomic mass of the molecule.
24.305 amu + 31.9988 amu + 2.0158 amu = 58.3196 amu
The atomic mass is just equivalent to its molar mass.
So, the molar mass of Magnesium hydroxide (Mg(OH)2) is 58.3196 g/mol.
14,200 because all you have to do to solve this is multiply 14.2 kilometers by 1,000 meters to find the distance that he walks.
Answer : The partial pressure of
at equilibrium is, 1.0 × 10⁻⁶
Explanation :
The partial pressure of
= 
The partial pressure of
= 
The partial pressure of
= 

The balanced equilibrium reaction is,

Initial pressure 1.0×10⁻² 2.0×10⁻⁴ 2.0×10⁻⁴
At eqm. (1.0×10⁻²-2p) (2.0×10⁻⁴+p) (2.0×10⁻⁴+p)
The expression of equilibrium constant
for the reaction will be:

Now put all the values in this expression, we get :


The partial pressure of
at equilibrium = (2.0×10⁻⁴+(-1.99×10⁻⁴) )= 1.0 × 10⁻⁶
Therefore, the partial pressure of
at equilibrium is, 1.0 × 10⁻⁶
212 ml of lead nitrate is required to prepare a dilute solution of 820.7 ml of lead nitrate.
Answer:
Option A.
Explanation:
Similar to Avagadro's law, there is another law termed as dilution law. As the product of volume and normality of the reactant is equal to the product of volume and normality of the product from the Avagadro's law. In dilution law, it will be as product of volume and concentration of the solute of the reactant is equal to the product of volume and concentration of solution.

So, as per the given question C1 = 5.45 M of lead nitrate and V1 has to be found. While C2 is 1.41 M of lead nitrate and V2 is 820.7 ml.
Then, 

So nearly 212 ml of lead nitrate is required to prepare a dilute solution of 820.7 ml of lead nitrate.
Answer
Gymnastics
Explanation:
for the simple fact that they do cool stuff