Answer:
Explanation:
We shall apply concept of Doppler's effect of apparent frequency to this problem . Here observer is moving sometimes towards and sometimes away from the source . When observer moves towards the source , apparent frequency is more than real frequency and when the observer moves away from the source , apparent frequency is less than real frequency . The apparent frequency depends upon velocity of observer . The formula for apparent frequency when observer is going away is as follows .
f = f₀ ( V - v₀ ) / V , f is apparent , f₀ is real frequency , V is velocity of sound and v is velocity of observer .
f will be lowest when v₀ is highest .
velocity of observer is highest when he is at the equilibrium position or at middle point .
So apparent frequency is lowest when observer is at the middle point and going away from the source while swinging to and from before the source of sound .
Answer:
Explanation:
A plane flies due north (90° from east) with a velocity of 100 km/h for 2 hours.
With no wind, it will be 100*2 = 200 km north of its starting point.
But a steady wind blows southeast at 30 km/h at an angle of 315° from due east.
So the wind itself will blow the plane 30*2 = 60km at an angle of 315° from due east.
That is the same as 60*cos315° = 42.43km due east and 60*sin315° = -42.43km north.
Combining, the plane is at 42.43km due east and 200-42.43 = 157.57km due north from its starting point.
The given velocity is 465 m/s.
Part a.

Answer: 1674 km/h
Part b.

Answer: 40,176 km/day.
Answer:
Yes
Explanation:
Because if you push it, the skateboard has kinetic/potential energy.