Rotational speed would increase...
v = omega . r
which means it's directly proportional to radius...
Answer:
n = 5 approx
Explanation:
If v be the velocity before the contact with the ground and v₁ be the velocity of bouncing back
= e ( coefficient of restitution ) = 
and

h₁ is height up-to which the ball bounces back after first bounce.
From the two equations we can write that


So on

= .00396
Taking log on both sides
- n / 2 = log .00396
n / 2 = 2.4
n = 5 approx
Sorry!
This cannot be answered. We don't have weight, height, etc.
The rate at which the height is changing is ( 5 / x ) m / hr
We know that,
Area of an equilateral triangle A =
/ 4
h =
x / 2
Where,
x = Side
h = Height
Given that,
dA / dt = 5
/ hr
h =
x / 2
Differentiate both sides with respect to t
dh / dt = (
/ 2 ) ( dx / dt )
dx / dt = ( 2 /
) ( dh / dt )
A =
/ 4
Differentiate both sides with respect to t
dA / dt = (
/ 4 ) ( 2x ) ( dx / dt )
5 = (
/ 4 ) ( 2x ) ( 2 /
) ( dh / dt )
dh / dt = ( 5 / x ) m / hr
Rate of change of height is defined as the rate at which height of an object changes with respect to time. It is represented as dh / dt
Therefore, the rate at which the height is changing is ( 5 / x ) m / hr
To know more about Rate of change of height
brainly.com/question/13283964
#SPJ4