Answer:
A
Explanation:
Ball bounces because of the difference in the air pressure on the outside of the ball, and opposite the point of impact, and the pressure inside of the ball. This means that the inside of the ball now has less space to contain the air molecules contained inside the ball, increasing the pressure inside the ball.
Answer:
43.89 min
Explanation:
Given that:-
The speed of light = 
The distance = 
The conversion of distance in km to distance into m is shown below as:-
1 km = 1000 m
So,
Distance = 
The relation between speed distance and time is shown below as:-

Thus,


Time = 2633.33 seconds
Also, 1 s = 1/60 min
So,
Time=
Somewhat false
observations can be made of a model of the statue of liberty, say, or in real line
The answer is B hope this helped
Answer:
23.0733 L
Explanation:
The mass of hydrogen peroxide present in 125 g of 50% of hydrogen peroxide solution:

Mass = 62.5 g
Molar mass of
= 34 g/mol
The formula for the calculation of moles is shown below:
Thus, moles are:

Consider the given reaction as:

2 moles of hydrogen peroxide decomposes to give 1 mole of oxygen gas.
Also,
1 mole of hydrogen peroxide decomposes to give 1/2 mole of oxygen gas.
So,
1.8382 moles of hydrogen peroxide decomposes to give ![\frac {1}{2}\times 1.8382 mole of oxygen gas. Moles of oxygen gas produced = 0.9191 molGiven: Pressure = 746 torr The conversion of P(torr) to P(atm) is shown below: [tex]P(torr)=\frac {1}{760}\times P(atm)](https://tex.z-dn.net/?f=%5Cfrac%20%7B1%7D%7B2%7D%5Ctimes%201.8382%20mole%20of%20oxygen%20gas.%20%3C%2Fp%3E%3Cp%3EMoles%20of%20oxygen%20gas%20produced%20%3D%200.9191%20mol%3C%2Fp%3E%3Cp%3EGiven%3A%20%3C%2Fp%3E%3Cp%3EPressure%20%3D%20746%20torr%0A%3C%2Fp%3E%3Cp%3EThe%20conversion%20of%20P%28torr%29%20to%20P%28atm%29%20is%20shown%20below%3A%0A%3C%2Fp%3E%3Cp%3E%5Btex%5DP%28torr%29%3D%5Cfrac%20%7B1%7D%7B760%7D%5Ctimes%20P%28atm%29)
So,
Pressure = 746 / 760 atm = 0.9816 atm
Temperature = 27 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (27 + 273.15) K = 300.15 K
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
0.9816 atm × V = 0.9191 mol × 0.0821 L.atm/K.mol × 300.15 K
<u>⇒V = 23.0733 L</u>