Answer:
the length of the simple pendulum is 0.25 m.
Explanation:
Given;
mass of the air-track glider, m = 0.25 kg
spring constant, k = 9.75 N/m
let the length of the simple pendulum = L
let the frequency of the air-track glider which is equal to frequency of simple pendulum = F
The oscillation frequency of air-track glider is calculated as;

The frequency of the simple pendulum is given as;

Thus, the length of the simple pendulum is 0.25 m.
Answer:
The first one (60%)
Explanation:
The first one converts 15% more energy than the other one. Therefore, it is more efficient.
Hope this helps!
Answer:
Technician A is right. The situation will happens even with only two bulbs in series
Explanation:
We must take into account that
1.- All electric device need its nominal voltage to operate
2.-Any and all electric device means an electric load for the source in terms of equation that means any device will implies a drop voltage of V = I*R ( I the flows current and R the resistance of the device)
3.-Nominal voltage for bulbs are specify for houses voltages you find between fase and neutral wires for instance in Venezuela 120 (v).
4.-In a imaginary circuit of only one bulb, the nominal voltage will be applied and the bulb will operates correctly, but when you add another bulb (in series) the nominal voltage will split between the two bulbs ( we could find a situation such as the first bulb work properly but the second one does not). The voltage split according to Ohms law (in such way that the sum of voltage between the terminal of the first bulb plus the voltage at terminals of the second one are equal to nominal voltage.
For that reason all the bulbs are connected in parallel in wich case all of them will operate with the common voltage
<span>The answer is 62 u. The molecular mass of a molecule (Mr) is the sum of atomic masses (Ar) of its elements. Ar(Na) = 23 u. Ar(O) = 16 u. Therefore, the molecular mass of sodium oxide is 62 u: Mr(Na2O) = 2 * Ar(Na) + Ar(O) = 2 * 23 u + 16 u = 46 + 16 = 62 u.</span>
Answer:
the magnitude and direction of d → B on the x ‑axis at x = 2.50 m is -6.4 × 10⁻¹¹T(Along z direction)
the magnitude and direction of d → B on the z ‑axis at z = 5.00 m is 1.6 × 10⁻¹¹T(Along x direction)
Explanation:
Use Biot, Savart, the magnetic field

Given that,
i = 1.00A
d → l = 4.00 m m ^ j
r = 2.5m
Displacement vector is


=2.5m
on the axis of x at x = 2.5

r = 2.5m
And unit vector


Therefore, the magnetic field is as follow


(Along z direction)
B)r = 5.00m
Displacement vector is


=5.00m
on the axis of x at x = 5.0

r = 5.00m
And unit vector


Therefore, the magnetic field is as follow


(Along x direction)