Answer: The answer to the first one is the second option and the answer for the second one is the first option.
Explanation:
<h2>
Hello!</h2>
The answer is: Charle's Law.
<h2>
Why?</h2>
The law that states that the volume and absolute temperature of a fixed quantity of gas (ideal gas) are proportional under constant pressure is the Charle's Law, also known as the law of volumes.
The law describes how a gas kept under constant pressure tends to expand when the temperature increases and it's described by the following equation:

Where,

Also, to describe the relationship between two differents volumes at different temperatures, we have:

Where,

Have a nice day!
Answer:
800mL
Explanation:
Using Boyle's law which states that the volume of a given mass of gas is inversely proportional to the pressure, provided temperature remains constant
P1V1= P2V2
P1 = 2 atm, V1 = 2000mL ,
P2 = 5atm , V2 = ?
2 × 2000 = 5 × V2
Divide both sides by 5
V2 = 4000 ÷ 5
V2 = 800mL
I hope this was helpful, please mark as brainliest
Answer:
Explanation:
Oxygen is one of the most abundant elements on this planet. Our atmosphere is 21% free elemental oxygen. Oxygen is also extensively combined in compounds in the earths crust, such as water (89%) and in mineral oxides. Even the human body is 65% oxygen by mass.
Free elemental oxygen occurs naturally as a gas in the form of diatomic molecules, O2 (g). Oxygen exhibits many unique physical and chemical properties. For example, oxygen is a colorless and odorless gas, with a density greater than that of air, and a very low solubility in water. In fact, the latter two properties greatly facilitate the collection of oxygen in this lab. Among the unique chemical properties of oxygen are its ability to support respiration in plants and animals, and its ability to support combustion.
In this lab, oxygen will be generated as a product of the decomposition of hydrogen peroxide. A catalyst is used to speed up the rate of the decomposition reaction, which would otherwise be too slow to use as a source of oxygen. The catalyst does not get consumed by the reaction, and can be collected for re-use once the reaction is complete. The particular catalyst used in this lab is manganese(IV) oxide.
I’m pretty the answer would be continental slope. :)
I really hope this helps.