Answer:
3.69 m/s
Explanation:
Forces :
mgsin Θ - mumgcosΘ = ma
g x sinΘ - mu x g x cosΘ = a
9.8 x sin 21 - 0.53 x 9.8 x cos 21 = a
a = -1.337 m/s²
so you have final velocity = 0 m/s
initial velocity = ? m/s
Given d = 5.1 m
By kinematics
vf² = vo² + 2ad
0 = vo² + 2 x -1.337*5.1
vo = 3.69 m/s
Answer: 1
an object positioned at some height in a gravitational field
Explanation:
Gravitational potential energy of an object is the energy stored due to position of the object or position at certain height relative to zero position.
Gravitational potential energy can also be expressed as object position at some height above or below zero position in a gravitational field
I think 1 and 2 make sense. But 1 make more sense than 2
Answer:
Acceleration of that planet is 30
.
Given:
initial speed of hammer = 0 
time = 1 s
distance = 15 m
To find:
Acceleration due to gravity = ?
Formula used:
Distance covered by hammer is given by,
s = ut + 
s = distance
u = initial speed of hammer
t = time taken by hammer to reach ground
a = acceleration
Solution:
Distance covered by hammer is given by,
s = ut + 
s = distance
u = initial speed of hammer
t = time taken by hammer to reach ground
a = acceleration
u = 0
t = 1 s
s = 15 m
a = g
Thus substituting these value in above equation.
15 = 0 + 
g = 15 × 2
g = 30 
Thus, acceleration of that planet is 30
.
data which is expressed in form of following way

here in above expression
= true value
= uncertainty in the value
now the relative uncertainty is given as

now by above formula we can say
a) 2.70 ± 0.05cm
here
True value = 2.70
uncertainty = 0.05
Relative uncertainty =
= 0.0185
b) 12.02 ± 0.08cm
here
True value = 12.02
uncertainty = 0.08
Relative uncertainty =
= 0.00665
Answer:
18.7842493212 W
Explanation:
T = Tension = 1871 N
= Linear density = 3.9 g/m
y = Amplitude = 3.1 mm
= Angular frequency = 1203 rad/s
Average rate of energy transfer is given by

The average rate at which energy is transported by the wave to the opposite end of the cord is 18.7842493212 W