1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex_Xolod [135]
3 years ago
13

A gas occupies 200 mL at -73°C. To have the same gas occupy 300 mL:Should the temperature be increased or decreased?

Chemistry
1 answer:
Eduardwww [97]3 years ago
6 0
The temp should increase because the volume has increased
You might be interested in
A pan containing 20 grams of water was allowed to cool from temperature of 95 degrees C. If the amount of heat released is 1200
mina [271]

Answer:

81 °C

Explanation:

I don’t know, I just know :)

8 0
2 years ago
How does fracking benefit humans?<br><br> (dont use go0gle please!)
Flura [38]

Answer:

Explanation:

Its just dangerous stuff can go in the air and harm others

4 0
3 years ago
Read 2 more answers
A sample of gas occupies a volume of 61.5 mL . As it expands, it does 130.1 J of work on its surroundings at a constant pressure
Lesechka [4]

Answer:

the final volume of the gas is V_2 = 1311.5 mL

Explanation:

Given that:

a sample gas has an initial volume of 61.5 mL

The workdone = 130.1 J

Pressure = 783 torr

The objective is to determine the final volume of the gas.

Since the process does 130.1 J of work on its surroundings at a constant pressure of 783 Torr. Then, the pressure is external.

Converting the external pressure to atm ; we have

External Pressure P_{ext}:

P_{ext} = 783 \ torr \times \dfrac{1 \ atm}{760 \ torr}

P_{ext} = 1.03 \ atm

The workdone W = P_{ext}V

The change in volume ΔV= \dfrac{W}{P_{ext}}

ΔV = \dfrac{130.1 \ J  \times \dfrac{1 \ L  \ atm}{ 101.325 \ J}  }{1.03 \ atm }

ΔV = \dfrac{1.28398717 }{1.03  }

ΔV = 1.25 L

ΔV = 1250 mL

Recall that the initial  volume = 61.5 mL

The change in volume V is \Delta V = V_2 -V_1

-  V_2= -  \Delta V  -V_1

multiply through by (-), we have:

V_2=   \Delta V+V_1

V_2 =  1250 mL + 61.5 mL

V_2 = 1311.5 mL

∴ the final volume of the gas is V_2 = 1311.5 mL

5 0
3 years ago
Given the following data:
bagirrra123 [75]

176.0 \; \text{kJ} \cdot \text{mol}^{-1}

As long as the equation in question can be expressed as the sum of the three equations with known enthalpy change, its \Delta H can be determined with the Hess's Law. The key is to find the appropriate coefficient for each of the given equations.

Let the three equations with \Delta H given be denoted as (1), (2), (3), and the last equation (4). Let a, b, and c be letters such that a \times (1) + b \times (2) + c \times (3) = (4). This relationship shall hold for all chemicals involved.

There are three unknowns; it would thus take at least three equations to find their values. Species present on both sides of the equation would cancel out. Thus, let coefficients on the reactant side be positive and those on the product side be negative, such that duplicates would cancel out arithmetically. For instance, 3 + (-1) = 2 shall resemble the number of \text{H}_2 left on the product side when the second equation is directly added to the third. Similarly

  • \text{NH}_4 \text{Cl} \; (s): -2 \; a = 1
  • \text{NH}_3\; (g): -2 \; b = -1
  • \text{HCl} \; (g): 2 \; c = -1

Thus

a = -1/2\\b = 1/2\\c = -1/2 and

-\frac{1}{2} \times (1) + \frac{1}{2} \times (2) - \frac{1}{2} \times (3)= (4)

Verify this conclusion against a fourth species involved- \text{N}_2 \; (g) for instance. Nitrogen isn't present in the net equation. The sum of its coefficient shall, therefore, be zero.

a + b = -1/2 + 1/2 = 0

Apply the Hess's Law based on the coefficients to find the enthalpy change of the last equation.

\Delta H _{(4)} = -\frac{1}{2} \; \Delta H _{(1)} + \frac{1}{2} \; \Delta H _{(2)} - \frac{1}{2} \; \Delta H _{(3)}\\\phantom{\Delta H _{(4)}} = -\frac{1}{2} \times (-628.9)+ \frac{1}{2} \times (-92.2) - \frac{1}{2} \times (184.7) \\\phantom{\Delta H _{(4)}} = 176.0 \; \text{kJ} \cdot \text{mol}^{-1}

3 0
3 years ago
Consider the two facts below:
OLEGan [10]

Answer:

A. There is more dissolved oxygen in colder waters than in warm water.

D. If ocean temperature rise, then the risk to the fish population increases.

Explanation:

Conclusion that can be drawn from the two facts stated above:

*Dissolved oxygen is essential nutrient for fish survival in their aquatic habitat.

*Dissolved oxygen would decrease as the temperature of aquatic habit rises, and vice versa.

*Fishes, therefore, would thrive best in colder waters than warmer waters.

The following are scenarios that can be explained by the facts given and conclusions arrived:

A. There is more dissolved oxygen in colder waters than in warm water (solubility of gases decreases with increase in temperature)

D. If ocean temperature rise, then the risk to the fish population increases (fishes will thrive best in colder waters where dissolved oxygen is readily available).

4 0
3 years ago
Other questions:
  • Which values are written in proper scientific notation? Check all that apply. –350 –350.00 –3.50 × 104 0.000350 3.50 × 104 3.50
    15·2 answers
  • Organ systems combine to form ____
    14·2 answers
  • Bromine has an atomic number of 35. How many protons are in an atom of bromine? 17 18 35 52
    5·1 answer
  • Rxn
    7·1 answer
  • How many joules are there in 148 calories
    13·2 answers
  • Why is hydrogen chloride (HCl) polar?
    14·2 answers
  • How do you know if the girl your dating is into the size or onto personality? 100 POINTS
    5·2 answers
  • Give the following compound's base name.
    5·1 answer
  • Một hỗn hợp X gồm CH3OH; C2H5OH; phenol có khối lượng 28,9 gam phản ứng vừa hết với 100ml dung dịch NaOH 2M. Phần trăm theo khối
    10·1 answer
  • A gas occupies 900.0 mL at a temperature of 300K. What is the volume at 132.0 °C?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!