Answer:
-7.04
Explanation:
9.8 multipled by -0.719 b
The maximum speed the mass can have before it breaks is 2.27 m/s.
The given parameters:
- <em>maximum mass the string can support before breaking, m = 17.9 kg</em>
- <em>radius of the circle, r = 0.525 m</em>
The maximum speed the mass can have before it breaks is calculated as follows;

Thus, the maximum speed the mass can have before it breaks is 2.27 m/s.
Learn more about maximum speed of horizontal circle here:brainly.com/question/21971127
Answer:
The electric field will be zero at x = ± ∞.
Explanation:
Suppose, A -2.0 nC charge and a +2.0 nC charge are located on the x-axis at x = -1.0 cm and x = +1.0 cm respectively.
We know that,
The electric field is

The electric field vector due to charge one

The electric field vector due to charge second

We need to calculate the electric field
Using formula of net electric field


Put the value into the formula




Put the value into the formula


If x = ∞, then the equation is be satisfied.
Hence, The electric field will be zero at x = ± ∞.
Answer:
6
Explanation:
Number of lines emanate from + 5 micro coulomb is 15 .
They terminates at negative charges that means at - 3 micro coulomb and - 2 micro Coulomb.
the electric field lines terminates at - 3 micro Coulomb and - 2 micro Coulomb is in the ratio of 3 : 2.
So the lines terminating at - 3 micro coulomb
= 
So the lines terminating at - 2 micro coulomb
= 
So, the number of filed lines terminates at - 2 micro Coulomb are 6.
A classic puzzle...
She either kicked it at a wall <em>exactly</em><em /> 10 foot in front of her, where the ball rebounded off the wall.
Or, she kicked the ball straight up, vertically, at a <em>90 degree angle,</em> where due to the law of gravity, which states that anything that goes up must come down, when the soccer ball reaches exactly 10 feet, it falls back down.
(Note: This is nearly impossible to achieve -- exactly 10 feet.)