Answer:
3.34×10^-6m
Explanation:
The shear modulus can also be regarded as the rigidity. It is the ratio of shear stress and shear strain
can be expressed as
shear stress/(shear strain)
= (F/A)/(Lo/ . Δx)
Stress=Force/Area
The sheear stress can be expressed below as
F Lo /(A *Δx)
Where A=area of the disk= πd^2/4
F=shearing force force= 600N
Δx= distance
S= shear modulus= 1 x 109 N/m2
Lo= Lenght of the cylinder= 0.700 cm=7×10^-2m
If we make Δx subject of the formula we have
Δx= FLo/(SA)
If we substitute the Area A we have
Δx= FLo/[S(πd^2/4]
Δx=4FLo/(πd^2 *S)
If we input the values we have
(4×600×0.7×10^-2)/10^9 × 3.14 ×(4×10^-2)^2
= 3.35×10^-6m
Therefore, its shear deformation is 3.35×10^-6m
A=area of the disk= πd^2/4
= [3.142×(4×10^-2)^2]/4
Answer:
NE DIYON INGILIZ MISIN SEN
Answer:
The volume at the surface is 10.97 L.
Explanation:
Given that,
Volume = 5.5 L
Height = 10 m
Density of sea water= 1025 kg/m³
We need to calculate the pressure at that point
Using formula of pressure

Put the value into the formula


We need to calculate the volume at the surface
Using equation of ideal gas

So, for both condition

Put the value into the formula


Hence, The volume at the surface is 10.97 L.
Answer:
the more particles packed together the faster it falls
Explanation:
the mass + the 1 constant g-force = the speed without adding air resistance
Answer: 1339.5 joules
Explanation:
Gravitational potential energy, GPE is the energy possessed by the jumper as he moves against gravity.
Thus, GPE = Mass m x Acceleration due to gravity g x Height h
Since Mass = 67kg
g = 9.8m/s^2
h = 2.04 metres
Thus, GPE = 67kg x 9.8m/s^2 x 2.04m
GPE = 1339.5 joules
Thus, the gravitational potential energy at the highest point is 1339.5 joules