Answer:
A hydrometer is an instrument used to determine specific gravity. It operates based on the Archimedes principle that a solid body displaces its own weight within a liquid in which it floats. Hydrometers can be divided into two general classes: liquids heavier than water and liquids lighter than water
The force on the proton is 17.4 N.
<h3>What is the force on the proton?</h3>
Now we know that the proton is positively charged and that the force on the charge as it moved through the magnetic field could be given by the relation; F = qvB
Where;
F = force
q = charge
v = velocity
B = magnetic field
Having said this, we can see that;
q = 1.601019 As or C
v = 2.4105 m/s
T = 4.5 T
F = 1.601019 As * 2.4105 m/s * 4.5 T
F = 17.4 N
Learn more about magnetic force:brainly.com/question/12824331
#SPJ1
Answer:
I HOPE THIS IS CORRECT
Explanation:
Power of water =2 kw=2000w
Mass of water =200kg
difference in temperature ΔT=70−10=60oC
Concept
energy required to heat the water = energy given by water in time t=pt
energy required to increase tempeature of water by 60oC,Q=msΔT
S= specific heat =4200J/kgoC
pt=msΔT
2000×t=200×4200×60
t=25200
or t=25.2×103sec.
Answer: 2.83 J/mol
Explanation:
Heat of solution, sometimes interchangeably called enthalpy of solution, is said to be the energy released or absorbed when the solute dissolves in the solvent. A solute is that which can dissolve in a solvent, to form a solution
Given
No of moles of CaCl = 7.5 mol
Total energy used = 21.2 J
Heat of solution = q/n where
q = total energy
n = number of moles
Heat of solution = 21.2 / 7.5
Heat of solution = 2.83 J/mol
Answer:
All the given options will result in an induced emf in the loop.
Explanation:
The induced emf in a conductor is directly proportional to the rate of change of flux.

where;
A is the area of the loop
B is the strength of the magnetic field
θ is the angle between the loop and the magnetic field
<em>Considering option </em><em>A</em>, moving the loop outside the magnetic field will change the strength of the magnetic field and consequently result in an induced emf.
<em>Considering option </em><em>B</em>, a change in diameter of the loop, will cause a change in the magnetic flux and in turn result in an induced emf.
Option C has a similar effect with option A, thus both will result in an induced emf.
Finally, <em>considering option</em> D, spinning the loop such that its axis does not consistently line up with the magnetic field direction will<em> </em>change the angle<em> </em>between the loop and the magnetic field. This effect will also result in an induced emf.
Therefore, all the given options will result in an induced emf in the loop.