Answer: The partial pressure of the dry oxygen is 742 torr
Explanation:
Dalton's Law of Partial Pressure states that the total pressure exerted by a mixture of gases is the sum of partial pressure of each individual gas present. Thus 
Given; Total pressure = 762 torr
partial pressure of water = 19.8 torr
partial pressure of dry oxygen = ? torr
Total pressure = partial pressure of water + partial pressure of dry oxygen
762 torr = 19.8 torr = partial pressure of dry oxygen
partial pressure of dry oxygen = 742 torr
The partial pressure of the dry oxygen is 742 torr
Answer:
Percent Composition
1. Find the molar mass of all the elements in the compound in grams per mole.
2. Find the molecular mass of the entire compound.
3. Divide the component's molar mass by the entire molecular mass.
4. You will now have a number between 0 and 1. Multiply it by 100% to get percent composition.
The change in energy of the system : -63 J
<h3>Further explanation</h3>
Given
279 J work
216 J heat
Required
The change in energy
Solution
Laws of thermodynamics 1
ΔU=Q+W
Rules :
- receives heat, Q +
- releases heat, Q -
- work is done by a system, W -
- work is done on a system, W +
a gas work on the surrounding : W =-279 J
a gas absorb heat from surrounding : Q = +216 J
Internal energy :
= -279+216
= -63 J
Answer: Therefore, the volume of a 0.155 M potassium hydroxide solution is 56.0 ml
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per Liter of the solution.
According to the neutralization law,
where,
= molarity of
solution = 0.338 M
= volume of
solution = 25.7 ml
= molarity of
solution = 0.155 M
= volume of
solution = ?
= valency of
= 1
= valency of
= 1
Therefore, the volume of a 0.155 M potassium hydroxide solution is 56.0 ml
Answer:
A non example of a galaxy is a star