Answer:
energy is equal to 1000 J
Explanation:
When the jumper is in the tent, he has a given height, this height gives him a gravitational potential energy, which forms his initial mechanical energy of 1000 J. After jumping, this energy is converted into elastic energy of the rope plus a remainder of potential energy gravitational, it does not reach the ground, but as the friction is negligible the total mechanical energy is conserved, therefore its energy is equal to 1000 J
This is a case of energy transformation, but the total value of mechanical energy does not change
Don't know if this is a True/False questions but that is true
Answer: 7840N
Explanation:
Given that
Potential energy = ?
Mass of sled = 20-kg
Distance = 40 meters
Acceleration due to gravity = 9.8m/s^2
Recall that potential energy is the energy possessed by a body at rest
i.e potential energy = mass m x acceleration due to gravity g x distance h
P.E = mgh
P.E = 20kg x 9.8m/s^2 x 40m
P.E = 7840N
Thus, the potential energy of the sled is 7840N
The correct answer is 10 years
Answer:
The distance is 
Explanation:
From the question we are told that
The distance from the conversation is 
The intensity of the sound at your position is 
The intensity at the sound at the new position is 
Generally the intensity in decibel is is mathematically represented as
![\beta = 10dB log_{10}[\frac{d}{d_o} ]](https://tex.z-dn.net/?f=%5Cbeta%20%20%3D%20%2010dB%20log_%7B10%7D%5B%5Cfrac%7Bd%7D%7Bd_o%7D%20%5D)
The intensity is also mathematically represented as

So
![\beta = 10dB * log_{10}[\frac{P}{A* d_o} ]](https://tex.z-dn.net/?f=%5Cbeta%20%20%3D%20%2010dB%20%2A%20%20log_%7B10%7D%5B%5Cfrac%7BP%7D%7BA%2A%20d_o%7D%20%5D)
=> ![\frac{\beta}{10} = log_{10} [\frac{P}{A (l_o)} ]](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cbeta%7D%7B10%7D%20%20%3D%20%20log_%7B10%7D%20%5B%5Cfrac%7BP%7D%7BA%20%28l_o%29%7D%20%5D)
From the logarithm definition
=> 
=> ![P = A (d_o ) [10^{\frac{\beta }{ 10} } ]](https://tex.z-dn.net/?f=P%20%3D%20%20A%20%28d_o%20%29%20%5B10%5E%7B%5Cfrac%7B%5Cbeta%20%7D%7B%2010%7D%20%7D%20%5D)
Here P is the power of the sound wave
and A is the cross-sectional area of the sound wave which is generally in spherical form
Now the power of the sound wave at the first position is mathematically represented as
![P_1 = A_1 (d_o ) [10^{\frac{\beta_1 }{ 10} } ]](https://tex.z-dn.net/?f=P_1%20%3D%20%20A_1%20%28d_o%20%29%20%5B10%5E%7B%5Cfrac%7B%5Cbeta_1%20%7D%7B%2010%7D%20%7D%20%5D)
Now the power of the sound wave at the second position is mathematically represented as
![P_2 = A_2 (d_o ) [10^{\frac{\beta_2 }{ 10} } ]](https://tex.z-dn.net/?f=P_2%20%3D%20%20A_2%20%28d_o%20%29%20%5B10%5E%7B%5Cfrac%7B%5Cbeta_2%20%7D%7B%2010%7D%20%7D%20%5D)
Generally power of the wave is constant at both positions so
![A_1 (d_o ) [10^{\frac{\beta_1 }{ 10} } ] = A_2 (d_o ) [10^{\frac{\beta_2 }{ 10} } ]](https://tex.z-dn.net/?f=A_1%20%28d_o%20%29%20%5B10%5E%7B%5Cfrac%7B%5Cbeta_1%20%7D%7B%2010%7D%20%7D%20%5D%20%20%3D%20A_2%20%28d_o%20%29%20%5B10%5E%7B%5Cfrac%7B%5Cbeta_2%20%7D%7B%2010%7D%20%7D%20%5D)
![4 \pi r_1 ^2 [10^{\frac{\beta_1 }{ 10} } ] = 4 \pi r_2 ^2 [10^{\frac{\beta_2 }{ 10} } ]](https://tex.z-dn.net/?f=4%20%5Cpi%20r_1%20%5E2%20%20%20%5B10%5E%7B%5Cfrac%7B%5Cbeta_1%20%7D%7B%2010%7D%20%7D%20%5D%20%20%3D%204%20%5Cpi%20r_2%20%5E2%20%20%20%5B10%5E%7B%5Cfrac%7B%5Cbeta_2%20%7D%7B%2010%7D%20%7D%20%5D)
![r_2 = \sqrt{r_1 ^2 [\frac{10^{\frac{\beta_1}{10} }}{ 10^{\frac{\beta_2}{10} }} ]}](https://tex.z-dn.net/?f=r_2%20%3D%20%20%5Csqrt%7Br_1%20%5E2%20%5B%5Cfrac%7B10%5E%7B%5Cfrac%7B%5Cbeta_1%7D%7B10%7D%20%7D%7D%7B%2010%5E%7B%5Cfrac%7B%5Cbeta_2%7D%7B10%7D%20%7D%7D%20%5D%7D)
substituting value
![r_2 = \sqrt{ 24^2 [\frac{10^{\frac{ 40}{10} }}{10^{\frac{80}{10} }} ]}](https://tex.z-dn.net/?f=r_2%20%3D%20%20%20%5Csqrt%7B%2024%5E2%20%5B%5Cfrac%7B10%5E%7B%5Cfrac%7B%2040%7D%7B10%7D%20%7D%7D%7B10%5E%7B%5Cfrac%7B80%7D%7B10%7D%20%7D%7D%20%5D%7D)
