Answer:
t is time in s For example, a car accelerates in 5 s from 25 m/s to 3 5m/s. Its velocity changes by 35 - 25 = 10 m/s. Therefore its acceleration is 10 ÷ 5 = 2 m/s2
Explanation:
Answer:
The value is 
Explanation:
From the question we are told that
The initial speed of the roller coaster is 
The length of the hill is 
The acceleration of the roller coaster is 
Generally the acceleration is mathematically represented as

Here
is the initial time which is equal to zero
is the final velocity which is mathematically represented as

So




Solving this using quadratic formula we obtain


Generally time cannot be negative so

Generally the final velocity is mathematically represented as


Answer:
1500 m/s
Explanation:
Recall that for a wave,
Speed = frequency x wavelength
here we are given frequency = 500 Hz and wavelength = 3m
simply substitute into above equation
Speed = 500 Hz x 3m
= 1500 m/s
Answer:
The problem occurs with all spherical mirrors.
Spherical mirrors are practical up to about inches in diameter.
Reflecting telescopes use spherical mirrors for apertures up to about 4 ".
Larger aperture telescopes use parabolic mirrors to obtain sharp focus.
Answer:
The answer is below
Explanation:
a) The change in energy is the difference between the final energy and the initial energy.
ΔE (energy change) = Ef (final energy) - Ei (initial energy)

The negative sign shows that energy is lost to the environment. Hence 0.334 J is lost to the environment.
b) According to the law of conservation of energy, energy cannot be created or destroyed but transformed from one form to another.
The oscillating object loses energy due to wind resistance, friction between the spring and the object. Given that the air is frictionless, hence the energy loss is due to friction which is converted to heat.