Answer:
Volume = mass/density
Rearrange the equation for Mass:
Mass = Volume x Density
That is one way you can do it
Conceptually, just look at the units, the wood block's density is 0.6<u>g/cm^3</u> while the volume is 2.2 <u>cm^3</u>
So if density is every gram per centimeter cubed, and the volume is at centimeter cubed, the logical thing to do would be to multiply the density by the volume to get the total mass.
0.6g/cm^3 x 2.2cm^3 = 1.32g
<u>Therefore the mass of the block of wood is 1.32g </u>
Answer : The mass of ammonia present in the flask in three significant figures are, 5.28 grams.
Solution :
Using ideal gas equation,

where,
n = number of moles of gas
w = mass of ammonia gas = ?
P = pressure of the ammonia gas = 2.55 atm
T = temperature of the ammonia gas = 
M = molar mass of ammonia gas = 17 g/mole
R = gas constant = 0.0821 L.atm/mole.K
V = volume of ammonia gas = 3.00 L
Now put all the given values in the above equation, we get the mass of ammonia gas.


Therefore, the mass of ammonia present in the flask in three significant figures are, 5.28 grams.
Answer:
Intermolecular forces (IMFs) can be used to predict relative boiling points. The stronger the IMFs, the lower the vapor pressure of the substance and the higher the boiling point. Therefore, we can compare the relative strengths of the IMFs of the compounds to predict their relative boiling points.
Explanation:
Answer:
No
Explanation:
Atomic number represents the identity of atoms
using number of protons which is equal in isotopes.