Answer:
0.6983 m/s
Explanation:
k = spring constant of the spring = 0.4 N/m
L₀ = Initial length = 11 cm = 0.11 m
L = Final length = 27 cm = 0.27 m
x = stretch in the spring = L - L₀ = 0.27 - 0.11 = 0.16 m
m = mass of the mass attached = 0.021 kg
v = speed of the mass
Using conservation of energy
Kinetic energy of mass = Spring potential energy
(0.5) m v² = (0.5) k x²
m v² = k x²
(0.021) v² = (0.4) (0.16)²
v = 0.6983 m/s
Answer:
0.4
Explanation:
Given that a particular inductor is connected to a circuit where it experiences a change in current of 0.8 amps every 0.10 sec. If the inductor has a self-inductance of 2.0 V, what is the inductance
Using the power formula
P = IV
Substitute all the parameters
P = 0.8 × 2
P = 1.6 W
But P = I^2 R
Substitute power and current
1.6 = 0.8^2 R
R = 1.6 / 0.64
R = 2.5 ohms
Inductance = reciprocal of resistance
Inductance = 1 / 2.5
Inductance = 0.4
I think analog but I could be wrong
None of the choices is a force. 'a' and 'b' are speeds. 'C' and 'd' are accelerations. ... The steady force of gravity is 9.8 newtons PER KILOGRAM of mass. ... The question is written by someonewho very much wants to discourage anyone interested in Physics.