Answer:
Reactance
Explanation:
In an AC circuit, the capacitive reactance of a capacitor is given by:

where
f is the frequency of the AC current
C is the capacitance of the capacitor
The reactance of the capacitor tells somehow the "resistance" of the capacitor to the passage of current through it. In fact:
- When the frequency of the AC current is zero (this means, we are in regime of DC current), the reactance becomes infinite, and this is true because the capacitor does not let the current pass through it)
- When the frequency of the AC current tends to infinite, the reactance becomes zero, and this is true because in this case the current changes direction so fast that the capacitor has not enough time to "block" the current, so the current almost no feels the presence of the capacitor.
Answer:
<em>The speed of the stream of air flowing through the leak is 340.754 m/sec</em>
Explanation:
Carefully applying the Bernoulli's equation the speed of the leak can be obtained. The attached images show step by step explanation of the question, while applying the Bernoulli's equation;
Answer:
A) R = (200 i ^ + 100 j ^ + 30k ^) m
, B) L = 223.61 m
, C) R = 225.61 m
Explanation:
Part A
This is a vector summing exercise, let's take a Reference System where the z axis corresponds to the height (flights), the x axis is the East - West and the y axis corresponds to the North - South.
Let's write the displacements
Descending from the apartment
10 flights of 3 m each, the total descent is 30 m
Z = 30 k ^ m
Offset at street level
L1 = 0.2 i ^ km
L2 = 0.1 j ^ km
Let's reduce everything to the SI system
L1 = 0.2 * 1000 = 200 i ^ m
L2 = 100 j ^ m
The distance traveled is
R = (200 i ^ + 100 j ^ + 30k ^) m
Part B
The horizontal distance traveled can be found with the Pythagorean theorem for the coordinates in the plane
L² = x² + y²
L = √ (200² + 100²)
L = 223.61 m
Part C
The magnitude of travel, let's use the Pythagorean theorem for the sum
R² = x² + y² + z²
R = √ (30² + 200² + 100²)
R = 225.61 m
The answer of this question is 0.6m/s
Answer:
At higher elevations, there are fewer air molecules above a given surface than a similar surface at lower levels. ... Since most of the atmosphere's molecules are held close to the earth's surface by the force of gravity, air pressure decreases rapidly at first, then more slowly at higher levels.
Explanation:
happy to help:)