Answer:
b. unsaturated
.
Explanation:
Hello there!
In this case, according to the given information, it turns out necessary for us to bear to mind the definition of each type of solution:
- Supersaturated solution: comprises a large amount of solute at a temperature at which it will be able to crystalize upon standing.
- Unsaturated solution: is a solution in which a solvent is able to dissolve any more solute at a given temperature.
- Saturated solution can be defined as a solution in which a solvent is not capable of dissolving any more solute at a given temperature.
In such a way, since 20 grams of the solute are less than the solubility, we infer this is b. unsaturated, as 33.3 grams of solute can be further added to the 100 grams of water.
Regards!
Answer:
2 atm
Explanation:
Chemical reactions are carried out at a certain rate. Sometimes that rate is quite slow, so we want to speed things up, which is usually used by increasing temperature, increasing pressure or adding a catalyst (a substance that increases the rate without changing itself).
If this is the case, then, when writing a chemical equation, we state these special conditions over a right arrow.
Now let's look at the answers:
- 25°C is a value and unit of temperature
- ∆ is a symbol that denotes change
- 2 atm is a value and unit of pressure (atmosphere is old unit for pressure)
- Pt is a chemical symbol for platinum, an element often used as a catalyst.
So, the correct answer is C) 2 atm
For the first one the pattern is multiply the previous number by five as you see 1 x 5 = 5 and so on. To keep adding to it you would do
125 x 5 = 625 625 x 5 = 3125 3125 x 5 = 15625
Now for the second one the pattern is divide the previous number by three as you can see 2187 / 3 = 729 and so on. To keep going you would
81 / 3 = 27 27 / 3 = 9 9 / 3 = 3
I hope this helps you and if you have anymore questions i'll be glad to answer them.
Answer:
<em>The electrons in an atom can only occupy certain allowed energy levels to a lower one</em>, the excess energy is emitted as a photon of light, with its wavelength dependent on the change in electron energy. This is why an atom can only emit specific wavelengths of light and not every possible wavelength.