Answer:
0.08kg/s
Explanation:
For this problem you must use 2 equations, the first is the continuity equation that indicates that all the mass flows that enter is equal to those that leave the system, there you have the first equation.
The second equation is obtained using the first law of thermodynamics that indicates that all the energies that enter a system are the same that come out, you must take into account the heat flows, work and mass flows of each state, as well as their enthalpies found with the temperature.
finally you use the two previous equations to make a system and find the mass flows
I attached procedure
Answer:
F = 0.0022N
Explanation:
Given:
Surface area (A) = 4,000mm² = 0.004m²
Viscosity = µ = 0.55 N.s/m²
u = (5y-0.5y²) mm/s
Assume y = 4
Computation:
F/A = µ(du/dy)
F = µA(du/dy)
F = µA[(d/dy)(5y-0.5y²)]
F = (0.55)(0.004)[(5-1(4))]
F = 0.0022N
Answer:
baking soda and vinegar dish soap
Explanation:
it will create a bubbles and let it sit for 3 hours and it will go away
Answer:
Option C: water pressure.
Explanation:
Water pressure allows water to reach the top of a building.