Answer:
400 milli-rems
Solution:
As per the question;
Maximum energy of particle, 
Weight, w = 1 kg
Energy absorbed, E = 
Now,
Equivalent dose is given by:

1 Gy = 1 J/kg
Also,
1 Gy = 
Therefore,
Dose equivalent in milli-rems is given by:

Answer:
gravitation
<em> good luck, hope this helps :)</em>
Answer:
v = 0.059 m/s
Explanation:
To find the final speed of Olaf and the ball you use the conservation momentum law. The momentum of Olaf and the ball before catches the ball is the same of the momentum of Olaf and the ball after. Then, you have:
(1)
m: mass of the ball = 0.400kg
M: mass of Olaf = 75.0 kg
v1i: initial velocity of the ball = 11.3m/s
v2i: initial velocity of Olaf = 0m/s
v: final velocity of Olaf and the ball
You solve the equation (1) for v and replace the values of all variables:

Hence, after Olaf catches the ball, the velocity of Olaf and the ball is 0.059m/s
Answer:
life (N) of the specimen is 117000 cycles
Explanation:
given data
ultimate strength Su = 120 kpsi
stress amplitude σa = 70 kpsi
solution
we first calculate the endurance limit of specimen Se i.e
Se = 0.5× Su .............1
Se = 0.5 × 120
Se = 60 kpsi
and we know strength of friction f = 0.82
and we take endurance limit Se is = 60 kpsi
so here coefficient value (a) will be
a =
......................1
put here value and we get
a =
a = 161.4 kpsi
so coefficient value (b) will be
b =
b =
b = −0.0716
so here number of cycle N will be
N = 
put here value and we get
N = 
N = 117000
so life (N) of the specimen is 117000 cycles
Answer:
Explanation:
the higher up on the Main Sequence the star is, the shorter it lives. The smaller main sequence stars have low luminosities and low surface temperatures. These stars take a very long time to fuse hydrogen into helium and will therefore live a very long life.