Hello!

Use the equation F = m · a (Newton's Second Law) to solve. Substitute in the given values:
F = 5 · 20
F = 100N
Answer:
The gazelles top speed is 27.3 m/s.
Explanation:
Given that,
Acceleration = 4.2 m/s²
Time = 6.5 s
Suppose we need to find the gazelles top speed
The speed is equal to the product of acceleration and time.
We need to calculate the gazelles top speed
Using formula of speed

Where, v = speed
a = acceleration
t = time
Put the value into the formula


Hence, The gazelles top speed is 27.3 m/s.
Answer:
Professional education as a science has been defined as a field of educational science that studies the growth of a person into a profession and the related problems. It refers to organized education aimed at the knowledge and skills needed in the profession and working life, as well as growing into active citizenship and membership of society. Professional education as a discipline studies vocational training, skills and learning related to the profession and working life.
It enables young people and adults to pursue goal-oriented learning with the aim of acquiring and developing the necessary skills in the profession and creating the conditions for independent professional activity and continuous development in the profession.
Answer:
B) Degrees
Explanation:
The directions of the vectors are often defined in terms of due East, due North, due West and due South. A direction exactly in between of North and East can be described as Northeast, similarly we can describe directions in terms of Northwest, Southeast and South west.
From these, the direction of a vector can be easily expressed in degrees, which is measured counter clockwise about its tail from due East. Considering that we can say that East is at 0° , North is at 90° , West is at 180 and South is at 270° counter clockwise rotation from due East.
So, we know that the direction of a vector lying somewhere between due East i.e 0° and due North i.e 90°, will be measured in degrees, which will have a value between 0°-90°
1. The velocity decreases, and the kinetic energy decreases.
2. An increase in temperature difference between the inside and outside of the building.
3. The total kinetic energy remains the same.
4. 76,761 J
5. The energy loss must increase.