Answer:
Mode
Explanation:
The mode is the number that appears most frequently in a data set. A set of numbers may have one mode, more than one mode, or no mode at all. Other popular measures of central tendency include the mean, or the average (mean) of a set, and the median, the middle value in a set.
Answer:
1. How many ATOMS of boron are present in 2.20 moles of boron trifluoride? atoms of boron.
2. How many MOLES of fluorine are present in of boron trifluoride? moles of fluorine.
Explanation:
The molecular formula of boron trifluoride is
.
So, one mole of boron trifluoride has one mole of boron atoms.
1. The number of boron atoms in 2.20 moles of boron trifluoride is 2.20 moles.
The number of atoms in 2.20 moles of boron is:
One mole of boron has ----
atoms.
Then, 2.20 moles of boron has
-
2. Calculate the number of moles of BF3 in 5.35*1022 molecules.

One mole of boron trifluoride has three moles of fluorine atoms.
Hence, 0.0888moles of BF3 has 3x0.0888mol of fluorine atoms.
=0.266mol of fluorine atoms.
Answer:
The ways that mutation can affect an organism include:
Changing the physical characteristics of the organism.
It can impact the way that the DNA is able to code the genetic information.
Also, mutation can lead to the death of an organism.
What is mutation?
Mutation simply means a change in the DNA sequence of an organism. It can result from DNA copying mistakes that were made during the cell division.
Mutation can affect an organism as it changes the phenotype of the organism. It can also impact the way that the DNA is able to code the genetic information and lead to the death of an organism.
Answer:
1.69×10²⁹ molecules.
Explanation:
The following data were obtained from the question:
Mass of Ammonia (NH3) = 5.25 tons
Molecules of Ammonia (NH3) =.?
Next, we shall convert 5.25 tons to grams (g). This can be obtained as follow:
1 ton = 907184.74 g
Therefore,
5.25 ton = 5.25 ton × 907184.74 g / 1 ton
5.25 ton = 4762719.885 g
Therefore, 5.25 tons is equivalent to 4762719.885 g
Finally, we shall determine the number of molecules of ammonia, NH3 in 4762719.885 g. This can be obtained as follow:
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.02×10²³ molecules. This implies that 1 mole of ammonia, NH3 also contains 6.02×10²³ molecules.
1 mole of ammonia, NH3 = 14 + (3x1) = 14 + 3 = 17 g
17 g of ammonia, NH3 contains 6.02×10²³ molecules.
Therefore, 4762719.885 g of ammonia, NH3 will contain = (4762719.885 × 6.02×10²³) / 17 = 1.69×10²⁹ molecules.
From the calculations made above,
5.25 tons (4762719.885 g) of ammonia, NH3 contains 1.69×10²⁹ molecules.