Answer:
the thickness of the film for destructive interference is 1 cm
Explanation:
We can assume that the radar wave penetrates the layer and is reflected in the inner part of it, giving rise to an interference phenomenon of the two reflected rays, we must be careful that the ray has a phase change when
* the wave passes from the air to the film with a higher refractive index
* the wavelength inside the film changes by the refractive index
λ = λ₀ / n
so the ratio for destructive interference is
2 n t = m λ
t = m λ / 2n
indicate that the wavelength λ = 2 cm, suppose that the interference occurs for m = 1, therefore it is thickness
t = 1 2/2 n
t = 1 / n
where n is the index of refraction of the anti-reflective layer. As they tell us not to take into account the change in wavelength when penetrating the film n = 1
t = 1 cm
So the thickness of the film for destructive interference is 1 cm
Answer:
Half life of S = 3.76secs
Explanation:
The concept of half life in radioactivity is applied. Half life is the time taken for a radioactive material to decay to half of its initial size.
For part 1 - How much signal will be degraded in 1secs = 1/3.9 = 0.2564
for part 2 - How much signal will be degraded in 1secs = 1/104 = 0.009615
Simply say = 1/3.9 + 1/104 = 0.266015
So both part 1 and part 2 took 1/0.266015 = 3.76secs is the half life of S when both pathways are active
Answer:
B
Explanation:
Heat increase molecular motion
Answer:
strong winds that blow for a long time over a great distance
weak winds that blow for short periods of time with a short fetch
Explanation:
When the winds are weak and blow for short periods, we experience the smallest ocean waves but when there are strong winds over a longer duration, the largest ocean waves are seen. Therefore, the conditions to produce the smallest and largest ocean waves are strong winds that blow for a long time over a great distance and weak winds that blow for short periods of time with a short fetch.