The answer for the following answer is answered below.
- <u><em>Therefore the time period of the wave is 0.01 seconds.</em></u>
- <u><em>Therefore the option for the answer is "B".</em></u>
Explanation:
Frequency (f):
The number of waves that pass a fixed place in a given amount of time.
The SI unit of frequency is Hertz (Hz)
Time period (T):
The time taken for one complete cycle of vibration to pass a given point.
The SI unit of time period is seconds (s)
Given:
frequency (f) = 100 Hz
wavelength (λ) = 2.0 m
To calculate:
Time period (T)
We know;
According to the formula;
<u>f =</u>
<u></u>
Where,
f represents the frequency
T represents the time period
from the formula;
T = 
T = 
T = 0.01 seconds
<u><em>Therefore the time period of the wave is 0.01 seconds.</em></u>
Am sorry what can you be more specific
Answer:
Oh I am sorry this is my first time on brainly i dont how to exit and sorry but dont know the answer
Explanation:
Answer: As Earth rotates, the Moon's gravity causes the oceans to seem to rise and fall. ... There is a little bit of friction between the tides and the turning Earth, causing the rotation to slow down just a little. As Earth slows, it lets the Moon creep away.
Explanation:
Answer:
The amplitude of vibration of string will increase due to which loudness of sound will increase
Explanation:
As we know that the guitar is based on the principle of Resonance. When string of the guitar vibrates at a given frequency then the sound produced in the hollow part of the guitar will also be at same frequency.
This is known as resonance condition, so guitar will produce same frequency sound as that of frequency of string.
Now if the string is plucked with increasing level of force then it will increase the amplitude of vibrations of the string due to which the sound produced in the guitar will also be of same level.
So here we can say that amplitude and intensity of sound related as

so on increasing amplitude the intensity will increase and hence it will produce loud sound