Answer:
0.149 s or 0.15 s
Explanation:
let initially ball is moving towards left hence initial velocity = - 28.62 m/s
final velocity as ball moves right = +20 m/s
force = rate of change in momentum
force = mass × change in velocity / time
or time = mass × change in velocity / force
time = 2× ( 20 -( -28.62)) / 652.36
time = 2× ( 20 +28.62)) / 652.36
time = 2× 48 .62/652.36
time = 0.149 s or 0.15 s
Answer:
The wood block reaches a height of 4.249 meters above its starting point.
Explanation:
The block represents a non-conservative system, since friction between wood block and the ramp is dissipating energy. The final height that block can reach is determined by Principle of Energy Conservation and Work-Energy Theorem. Let suppose that initial height has a value of zero and please notice that maximum height reached by the block is when its speed is zero.



(1)
Where:
- Maximum height of the wood block, in meters.
- Initial speed of the block, in meters per second.
- Kinetic coefficient of friction, no unit.
- Gravitational acceleration, in meters per square second.
- Mass, in kilograms.
- Distance travelled by the wood block along the wooden ramp, in meters.
- Inclination of the wooden ramp, in sexagesimal degrees.
If we know that
,
and
, then the height reached by the block above its starting point is:


The wood block reaches a height of 4.249 meters above its starting point.
The answer is in the picture.
Answer:is this a question??? I’m so confused
Explanation:
Answer:
The hunter should aim directly at the perched monkey because the tranquilizer dart will fall away from the line sight at the same rate that the monkey falls from its perch.
Tan theta = 9 / 90 = .1 so theta = 5.71 deg
The time for the monkey to reach the ground is
t = (2 h / g)^1/2 = (18 / 9.8)^1/2 = 1.36 sec
So the horizontal speed of the dart must be at least
Vx = 90 m / 1.36 sec = 66.4 m/s
Vx = V cos theta
V = 66.4 m/s / cos 5.71 = 66.7 m/s